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Preface

The singular value decomposition,  = Σ  , is a deceptively simple state-

ment. However it has very important components including least squares, fun-

damental subspaces, orthonormal bases and the spectral theorem. It has a

number of theoretical topics, but with the advent of computation tools the

SVD and its variations have an number of important applications.

An important challenge is to find time for this in an undergraduate ma-

trix/linear algebra course. The following short chapters attempt one possible

solution, which could be used as a supplement or as a special topics course.

Another possibility is to create an additional course on matrices and followed

by a more general vector space course; this would be a two-semester sequence

on linear algebra.

Most applications involve a number of parameters and variables. The first

two semesters of calculus are focused on functions of one variable. It is impor-

tant to early introduce engineering/science students in their studies to more

realistic applications. One way to do this is via an elementary matrix course,

which could be taken concurrently with the second semester of calculus. A

follow up course would have time for SVD, general vector and function spaces

as well some significant applications.

These notes contain a partial description of several MATLAB codes which

illustrate the mathematical concepts and applications. The full codes can be

found at https://white.math.ncsu.edu/svdfiles/filename where filename is se-

lected from:

price_expdata.m

qr_col.m

svd_ex.m

imagusa.m

letteru.m

letters.m

lettera.m

svdimage.m

microchip.jpg

moon.jpg

pollen.jpg

xi
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Introduction

The reader should be familiar with calculus of one variable, and basic matrix

computations with row operations and inverse matrices. The first four chapters

contain minimal additional materials that are needed to develop the singular

value decomposition (SVD) of a ×  real matrix. These include the general

least squares problem, the fundamental subspaces, basis and the eigenvectors

of real symmetric matrices. The eigenvectors associated with the matrix 

are used to construct the column vectors of  in the SVD  = Σ   The

reader may find it useful to consult [14] for an introduction to matrices, [7]

for a more comprehensive study of matrices/linear algebra, and [12] for a very

popular treatment of matrix/linear algebra analysis.

The reader who has some knowledge of matrices, but lacks a standard course

on linear algebra, should be able to master the first four chapters. Be careful

to fill in some the details and any omitted proofs. The notes have been written

using real and not complex numbers; a good exercise is to extend these results

to complex numbers.

The last four chapters include existence of the SVD factors. Three varia-

tions of the SVD and pseudoinverse are discussed. Important applications to

image compression, search engines, noise filters and hazard identifications are

introduced.

Let  be a ×  real matrix and have rank() =  The general or "full"

form of the SVD of is

 = Σ 

= [1 2]

∙
Σ 0×(−)

0(−)× 0(−)×(−)

¸ ∙
 
1

 
2

¸


where Σ is  ×  nonsingular diagonal matrix. The columns of 1 2 1 and

2 are orthonormal bases for the fundamental subspaces () (
 ) ( )

and (), respectively. The "small" version is

 = 1Σ

1 

The "truncated" version is the approximation

 ∼= Σ1(: )1(: ) 

xiii



xiv INTRODUCTION

In applications the matrix  may come from representations of an image, a

frequency matrix associated with a search engine , or signal with noise. A forth

application involves least squares problem from collected data at observation

sites for an unknown hazard from source sites. The truncated SVDs are used as

approximations of the matrix. Errors may appear because of the truncation or

because of ill-conditioned problems and uncertain data. A fifth application is to

parameter identification and epidemic models. Additional applications can be

found in the current literature, for example, in [4] the SVD is used in artificial

intelligence and machine learning.

There are a number of extensions. The vector spaces maybe defined over

general fields and not just the real or complex numbers, see [6]. There are

generalized SVD as given in section 8.7.3 of [5]. Moreover, the SVD can be

extended to special Hilbert spaces and additional applications are given in [8].



Chapter 1

Least Squares and Normal

Equations

The least squares solution(s) of  =  are equivalent to finding the solution(s)

of the normal equations  =  If  is nonsingular, then there is

a unique solution. An application to parameter identification is illustrated in

the second section. The third and fourth sections construct multiple solutions.

This is done by using the basis for the subspace () and the projection of 

onto ()

1.1 Normal Equations

The solution of the normal equations will be shown to be equivalent to finding

the minimum of the residual. More precisely, these terms are defined as follows.

Definition 1 Let  be ×  The least squares solution, , of  =  if and

only if for () ≡ − and all 

() () ≤ () ()

Definition 2 The normal equations are  =  or equivalently  () =

0×1.

Remark. This means the columns of  are perpendicular to ()

Theorem 1.1.1  is a least squares solution of  =  if and only if  is some

solution of the normal equations.

1



2 CHAPTER 1. LEAST SQUARES AND NORMAL EQUATIONS

Proof. The proof follows from

() = −

= −(+  − )

= ()−( − ) and

() () = (()−( − )) (()−( − ))

= () ()− 2( − ) () + (( − ))( − )

≥ () ()− 2( − ) ()

If  () = 0×1, then () () ≥ () ()

If  is a least squares solution, then choose  = + where  a unit vector

and   0 Use the least squares inequality and the above equality to get

0 ≤ () ()− () ()

= −2  () + ()


Divide by   0

0 ≤ −2  () + ()
 ()

Let  ↓ 0 to get
0 ≤ −2  () = −2[ ()]

Likewise, choose  = + (−) to get the other inequality
0 ≤ 2  () = 2[ ()]

So,  () = 0×1.

Theorem 1.1.2 If  has full column rank ( = 0×1 implies  = 0×1),
then  is nonsingular and the normal equations have a unique solution.

Proof.  = 0×1 implies  () = () () = 0 Then  =

0×1 and the full column rank gives  = 0×1 So, the  ×  matrix  is

nonsingular.

Example 1  =

⎡⎣ 1 1

1 2

1 3

⎤⎦ and  =
⎡⎣ 10

9

7

⎤⎦ 
 =

∙
3 6

6 14

¸
and  =

∙
26

49

¸


 =

∙
3 6

6 14

¸−1 ∙
26

49

¸
=

∙
353

−32
¸


Example 2 Identify the parameters in the Newton cooling (() = tempera-

ture) or the Price decay (() = price) models:




= ( − ) or




= (min − )
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A discrete approximation of the Price model is

+1 − −1

2∆
= (min) + (−) where  ' (∆)

The unknown parameters are (min) and (−) If there are six data measure-
ments for the past price, then  will be 4× 2 with 1 = (−) and 2 = (min)
The least squares problem is⎡⎢⎢⎣

2 1

3 1

4 1

5 1

⎤⎥⎥⎦∙ 1
2

¸
=

⎡⎢⎢⎢⎣
2+1−2−1

2∆
3+1−3−1

2∆
4+1−4−1

2∆
5+1−5−1

2∆

⎤⎥⎥⎥⎦ 
When this is solved, one can compute  and min The solution of the continuous

price model has these values and an exponential function of time. Now predicted

prices for future times can be done.

1.2 MATLAB Code price_expdata.m

The code in this section is an implementation of the above example. The price

data is given in line 8, and the matrix and column vectors are computed in lines

10-14. Solution of the normal equation is given in line 18. This is used in lines

19-21 to compute the two parameters and a future price. The numerical and

graphical outputs are given in lines 25-31 and in Figure 1.2.1.

1 % Predict the price given more additional past prices.

2 % The exponential model is used.

3 % The method used is the normal equations.

4 %

5 % Input data

6 %

7 clear

8 price = [2080 2000 1950 1910 1875 1855];

9 time = 0:1:15;

10 for i = 2:5

11 d(i-1) = (price(i+1) - price(i-1))/2;

12 end

13 A = [price(2:5)’ ones(4,1)]

14 d = d’

15 %

16 % The normal equations are solved.

17 %

18 x = (A’*A)\(A’*d) % x = A\d

19 c = -x(1)
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20 pmin = x(2)/(-x(1))

21 future_price = pmin +(2080 - pmin)*exp(-c*time);

22 %

23 % Output is in both numerical and graphical form.

24 %

25 plot(time(1:6),price,’*’,time, future_price)

26 title(’price data and predicted price curve’)

27 display(’Predicted price at time = 8’)

28 future_price(9)

29 display(’Residual vector’)

30 r = price’ - future_price(1:6)’

31 rTr = r’*r

>> price_expdata

A =

2000 1

1950 1

1910 1

1875 1

d =

-65.0000

-45.0000

-37.5000

-27.5000

x =

-0.2920

520.8994

c =

0.2920

pmin =

1.7839e+03

Predicted price at time = 8

=

1.8126e+03

Residual vector

r =

0

-5.0238
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Figure 1.2.1: Parameter Identification Using Least Squares

0.9662

2.7779

-0.9983

2.3187

rTr =

40.2620

1.3 Basis of Subspace

In the least squares problem  =  one can view the  to be the closest to

() ≡ { :  =  and  ∈ R}  () is called the range of A, and it is a
subspace of R.

Definition 3 Let  ⊂ R be any subspace. {1  } is called a basis of 
if and only if

(i). each  ∈  is a linear combination of the basis

 = 11 + · · ·+  and

(ii). the set is linearly independent 11 + · · ·+  = 0×1 implies

1 = · · · =  = 0

The  is called the dimension, and it is unique regardless of the basis.
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Remark. Let be the× matrix formed by the columns of a basis. Linear
independence means  = 0×1 implies  = 0×1

Example 3 Let  = R2 Two bases are

1 =

∙
1

0

¸
and 2 =

∙
0

1

¸
1 =

∙
1

1

¸
and 2 =

∙
1

−2
¸


Example 4 The columns of the matrix  are linearly independent

 =

⎡⎢⎢⎣
2000 1

1950 1

1910 1

1875 1

⎤⎥⎥⎦ 
Theorem 1.3.1 If  ⊂ R has a basis {1  }, then

1. each  ∈  has a unique linear combination and

2.  = () is unique.

Proof. Consider the special case in the first item where  = 2. Let  =

11 + 22 and  = b11 + b22 Subtract these two
(1 − b1)1 + (2 − b2)2 = 0×1

The linear independence implies 1 − b1 = 0 and 2 − b2 = 0 The general case
is similar.

Consider the special case for the second item where  = 2 and b = 3

with bases {1 2} and { b1 b2 b3} This will lead to a contradiction that b3
is a linear combination of b1 and b2. Since {1 2} is a basis,

b1 = 111 + 122b2 = 211 + 222 andb3 = 311 + 322.

At least one of 11 and 12 is not zero, say 11 6= 0 Then

1 =
b1 − 122

11
and

b2 =
21

11
b1 + −2112 + 1122

11
2

If −2112 + 1122 = 0, then b2 = 21
11
b1 contradicts the linear independence

of { b1 b2 b3} If −2112 + 1122 6= 0 then one can solve 2 as a linear

combination of b1 and b2 So, both 1 and 2 are linear combinations of b1
and b2 From b3 = 311 + 322 b3 is also a linear combination of b1 and
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b2 This contradicts the linear independence of { b1 b2 b3} The proof of the
general case is similar.

Another variation of the above paragraph is to show there is a nontrivial

solution  ∈ R3 such that

0×1 = 1 b1 + 2 b2 + 3 b3
= 1 (111 + 122)

+2(211 + 222)

+3(311 + 322)

= (111 + 221 + 331)1

+(112 + 222 + 332)2

There exists a nontrivial solution to the following algebraic system with two

equations and three unknowns

∙
11 21 31
12 22 32

¸⎡⎣ 1
2
3

⎤⎦ = ∙ 0
0

¸


In the above paragraph, we argued the (1 1) and (2 2) pivots were not zero.

Example 5 Consider a 3× 2 matrix

 =

⎡⎣ 1 1

1 2

1 3

⎤⎦ 
The two columns are linearly independent, and

() =

⎧⎨⎩1

⎡⎣ 1

1

1

⎤⎦+ 2

⎡⎣ 1

2

3

⎤⎦ : 1 2 ∈ R
⎫⎬⎭ 

Example 6 Consider a 3× 3 matrix

 =

⎡⎣ 1 1 2

1 2 3

1 3 4

⎤⎦ 
The third column is the sum of the first two columns. The first two columns

are linearly independent, and they are a basis for ()

Example 7 Consider the least squares problem  =  where

 =

⎡⎣ 1 2

2 4

3 6

⎤⎦ and  =

⎡⎣ 10

5

2

⎤⎦ 
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The normal equations have multiple solutions

 = 

∙
2

−1
¸
+

∙
2614

0

¸


This follows from 

∙
2

−1
¸
=

⎡⎣ 0

0

0

⎤⎦ 

 (−) =

∙
1 2 3

2 4 6

¸
(

⎡⎣ 10

5

2

⎤⎦−
⎡⎣ 0

0

0

⎤⎦− 2614
⎡⎣ 1

2

3

⎤⎦)
=

∙
0

0

¸


We will return to this example in Sections 1.4, 3.2 and 7.1.

1.4 Projection to Subspace

Consider a two dimension subspace in R3 If a point  ∈ R3 is not in this
subspace, then one can find a point in the subspace that is closest to  The

following is a generalization to R As we shall see this is related to the least
squares problem.

Definition 4 Let  ∈ R and  ⊂ R be a subspace with basis {1  }
() ∈  is called a projection of  onto  if and only if

(− ())
 (− ()) ≤ (− ) (− ) for all  ∈ 

Theorem 1.4.1 Let {1  } be a basis for  ⊂ R. () ∈  if and only

if 
 (− ()) = 0 for all  = 1 · · ·  . Moreover,

1. the projection is unique so that () is function,

2.  (− ()) = 0 for all  ∈  and

3.  ≥ ()
()

Proof. Use () and  are a linear combination of the basis

() = b11 + · · ·+ b and

 = 11 + · · ·+ 

Let  ≡ [1 · · ·] be an ×  matrix. Then () =b,  = and the

projection gives a least squares solution of b = 

(− ())
 (− ()) ≤ (− ) (− )

(−b) (−b) ≤ (−) (−)
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Because {1  } is a basis, has full column rank and is nonsingular.

In this case the normal equations  (−) = 0×1 have a unique solution.
The proof of the inequality follows from () ∈  and ()

 (−()) =
0 Write  = (− ()) + () to get

 = (− ())
 (− ()) +

2()
 (− ()) + ()

()

= (− ())
 (− ()) + 0 + ()

()

≥ ()
()

The projection of  onto  = () can be used to identify all least squares

solutions.

Theorem 1.4.2 Let  be  ×  and  = () be the range of  Then

 = b +  are least squares solutions to  =  where ()() ∈ (),

b = ()() and  = 0×1.

Proof. Since ()() ∈ (), there exists b such that b = ()()

Because ()() is a projection, for all  ∈ () with  = 

(− ()())
 (− ()()) ≤ (− ) (− )

(−b) (−b) ≤ (−) (−)

So, b is a least squares solution and must satisfy the normal equations. Because
 = 0×1 b+  must also satisfy the normal equations

(b+  ) =  (b+ 0×1) = 

Example 8 Revisit Example 7 where

 =

⎡⎣ 1 2

2 4

3 6

⎤⎦ and () = {
⎡⎣ 1

2

3

⎤⎦ :  ∈ R}
Here  = 3  = 2 and  = 1 with

1 =

⎡⎣ 1

2

3

⎤⎦ and  =

⎡⎣ 10

5

2

⎤⎦ 
Require 

1 (− ()()) = 0⎡⎣ 1

2

3

⎤⎦ (
⎡⎣ 10

5

2

⎤⎦− 

⎡⎣ 1

2

3

⎤⎦) = 0
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Then  = 2614 and

b = ()()⎡⎣ 1 2

2 4

3 6

⎤⎦∙ 2614
0

¸
= 2614

⎡⎣ 1

2

3

⎤⎦ 
Choose b = ∙ 2614

0

¸
and  = b ∙ 2

−1
¸




Chapter 2

Fundamental Subspaces

() and ()

Elementary matrices (row operations) will be used to construct the basis for

the nullspace, () and the range space, () This construction will first be

illustrated for two examples. The general case is described in the second section.

These bases are not orthonormal, but they still are useful in the general least

squares problem.

2.1 Examples and Bases

Definition 1 Let  be an × matrix and view it as a mapping from R into
R

() ≡ { ∈ R :  = 0×1}
() is subspace in R

and is called a nullspace or a kernel of 

() ≡ { ∈ R :  =  where  ∈ R}
() is a subspace in R

and is called a range or a column space of 

Example 1  =

⎡⎣ 1 1 2 3

2 2 8 10

3 3 10 13

⎤⎦ with  = 3 and  = 4

 =  may be rewritten in compact form as an augmented matrix

[ ] =

⎡⎣ 1 1 2 3

2 2 8 10

3 3 10 13

1
2
3

⎤⎦ 
11



12 CHAPTER 2. FUNDAMENTAL SUBSPACES () AND ()

Use elementary matrices (row operations) to transform it to row echelon

form

31(−3)21(−2) [ ] =

⎡⎣ 1 1 2 3

0 0 4 4

0 0 4 4

1
2 − 21
3 − 31

⎤⎦
32(−1)31(−3)21(−2) [ ] =

⎡⎣ 1 1 2 3

0 0 4 4

0 0 0 0

1
2 − 21

3 − 1 − 2

⎤⎦ 
The pivots are at (1 1) and (2 3) the fixed variables are 1 3 and the free

variables are 2 4 Let  be the product of the elementary matrices

 =

⎡⎣ 1 0 0

−2 1 0

−1 −1 1

⎤⎦ 
 [ ] = [ ] or  =  =  If []3 = 0 then  =  has

a solution. Because  has an inverse,  =  and  =  have the same

solution.

Definition 2 rank() ≡ number of pivots = 

 is number of fixed variables.

−  is the number of free variables.

In the above example  = 2 Use the notation (1) = 1 (1) = 1 for

the first pivot and (2) = 2 (2) = 3 for the second pivot.

Find () by setting the free variables to zero and solving  = ∙
1 2

0 4

¸ ∙
1
3

¸
=

∙
1

2 − 1

¸


Use the pivot columns of  in −1 =  = −1 = 

() =

⎧⎨⎩ :  =

⎡⎣ 1

2

3

⎤⎦1 +
⎡⎣ 2

8

10

⎤⎦3
⎫⎬⎭ 

Since the first and third columns are linearly independent, they are a basis and

dim(()) = 2.

Find () by using the free variables. Solve the equivalent  = 03×1 and
 =  = 03×1 Solve the pivot variables in terms of the free variables∙

1 2

0 4

¸ ∙
1
3

¸
=

∙ −2 − 34
−44

¸
and∙

1
3

¸
=

∙ −1
0

¸
2 +

∙ −1
−1

¸
4
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() =

⎧⎪⎪⎨⎪⎪⎩ :  =

⎡⎢⎢⎣
−1
1

0

0

⎤⎥⎥⎦2 +
⎡⎢⎢⎣
−1
0

−1
1

⎤⎥⎥⎦4
⎫⎪⎪⎬⎪⎪⎭ 

Since the columns are linearly independent, they form a basis and dim(())

= 4− 2 = 2

Example 2  =

⎡⎢⎢⎣
1 2 3

1 2 3

2 8 10

3 10 13

⎤⎥⎥⎦  Solve   =  by using elementary row

operations to form b = b and then solve b = b
b =

⎡⎢⎢⎣
1 0 0 0

−1 1 0 0

−2 0 1 0

−1 0 −1 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 2 3

1 2 3

2 8 10

3 10 13

1
2
3
4

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 2 3 1
0 0 0 −1 + 2
0 4 4 −22 + 3
0 0 0 −1 − 3 + 4

⎤⎥⎥⎦ 
The pivots are (1 1) and (3 2) the fixed variables are 1 2 and the free variable

is 3 In order to solve b = b the second and fourth components of b must
be zero. The rank( ) = b = 2 and use the notation (1) = 1 (1) = 1

for the first pivot and (2) = 3 (2) = 2 for the second pivot.

Find ( ) by the pivot columns of   Set the free variable 3 = 0 and

solve ∙
1 2

0 4

¸ ∙
1
2

¸
=

∙
1

−22 + 3

¸


This solves

b

⎡⎣ 1
2
0

⎤⎦ = b =
⎡⎢⎢⎣

1
0

−22 + 3
0

⎤⎥⎥⎦ 
and because b is nonsingular



⎡⎣ 1
2
0

⎤⎦ = 

⎡⎢⎢⎣
1

1

2

3

⎤⎥⎥⎦ 1 +
⎡⎢⎢⎣
2

2

8

10

⎤⎥⎥⎦ 2 = 
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The first two columns of  are linearly independent and form a basis for

( ) =

⎧⎪⎪⎨⎪⎪⎩ :  =

⎡⎢⎢⎣
1

1

2

3

⎤⎥⎥⎦ 1 +
⎡⎢⎢⎣
2

2

8

10

⎤⎥⎥⎦ 2
⎫⎪⎪⎬⎪⎪⎭ 

Find ( ) by solving b = 04×1. Find the fixed variables 1 2 in terms
of the free variable 3∙

1 2

0 4

¸ ∙
1
2

¸
+

∙
3

4

¸
3 =

∙
0

0

¸


This gives 2 = −3 and 1 = −3 The nullspace has dimension equal to one
and

( ) =

⎧⎨⎩ :  =

⎡⎣ −1−1
1

⎤⎦ 3
⎫⎬⎭ 

Remark 1.  =  implies

 =  =

⎡⎢⎢⎣
1 0 0

1 0 0

2 4 0

3 4 0

⎤⎥⎥⎦ 
So, the third column of  must be in the nullspace of  , which agrees with

the second example.

Remark 2. b = b implies

 b = b =

⎡⎣ 1 0 0 0

2 0 4 0

3 0 4 0

⎤⎦ 
So, the second and fourth columns of b must be in the nullspace of , and

this agrees with the first example.

Remark 3. In the first example we required 3− 1− 2 = 0 This can be

written as £
1 2 1

¤⎡⎣ −1−1
1

⎤⎦ = 0
So,  is perpendicular to any element in ( )

Remark 4. In the second example we required −1 + 2 = 0 and −1 −
2 + 4 = 0 that is,



⎡⎢⎢⎣
−1
1

0

0

⎤⎥⎥⎦ = 0 and 

⎡⎢⎢⎣
−1
0

−1
1

⎤⎥⎥⎦ = 0
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This means  must be perpendicular to any element in ()

2.2 Construction of Bases

Consider the general ×  matrix  and use elementary matrices to find the

row echelon form [ ] = [ ] = [ ] Since  is nonsingular,  = 

and  =  are equivalent. If the non fixed variable rows of [ ] are all

zeros, then  =  has a solution.

Let ( ) be the row and column numbers of the pivots where 1 ≤  ≤
 = () and

() = row of pivot  and

() = column of pivot 

The fixed variables are () and the free variables are  where  6= ()

with 1 ≤  ≤ 

Theorem 2.2.1 Let  be  ×  with rank() = , and  be a product of

elementary matrices that give the row echelon form. If  is ×1 and [] = 0
for all  6= () where 1 ≤  ≤ , then

1.  ∈ ()

2. () has a basis from the pivot columns of  and

dim(()) = rank() = 

3. () has a basis by solving the fixed variables in terms

of the free variables and dim(()) = − 

Proof. Since the non fixed variable rows of [ ] are all zeros,  =  has

a solution and this solution also solves  =  This means  ∈ ()  = 

is solved by setting the free variables to zero. This means the  in  = 

is a linear combination of the  pivot columns of  These pivot columns are

linearly independent; if  = 0×1, then both the fixed and free variables are
zero. Thus, dim(()) = 

Find () by solving the  ×  upper triangular system for the fixed vari-

ables,  =  in terms of the free variables,  =  with  6= ().

( ) + ( ) = 0×1

 = −( )−1( )
= − and

 =

∙ −
−

¸


So, the columns of

∙ −
−

¸
are linearly independent and dim(()) = − 
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Theorem 2.2.2 Let  be ×  with rank() = . Then rank( ) =  that

is, rank( ) = rank().

Proof. Let rank( ) = b Since  is  ×  and by Theorem 2.2.1,

dim(( )) = b and dim(( )) =  − b Let  =  have  −  zero

rows with rank() =  Then  =  has  −  zero columns and

dim(( )) = − By Theorem 1.3.1 dim(( )) is unique so that − =
− b and  = b



Chapter 3

Perpendicular Subspaces

and Bases

If  is ×, then  : R → R Any vector in R may be written as a sum of
vectors in () and in ( ) Moreover these two vectors are perpendicular,

which is part of the fundamental theorem. The bases for these two subspaces

may have orthonormal vectors. This is established by using the factors  = 

where the columns of  are orthonormal and  is upper triangular.

3.1 Perpendicular Subspaces

Consider R3 and let  be the xy-plane. All the vectors in R3 that are perpen-
dicular to the xy-plane are multiples of the unit vector in the z-direction. This

is generalized by the following.

Definition 1 Let  be a vector space in R The perpendicular or orthogonal
complement is

⊥ ≡ © ∈ R :  = 0 for all  ∈
ª

Example 1 Consider R3 and  =

⎧⎨⎩1

⎡⎣ 1

1

0

⎤⎦+ 2

⎡⎣ 1

0

1

⎤⎦ : 1, 2 ∈ R
⎫⎬⎭  The

cross product of the two column vectors is perpendicular to both vectors. Then

⊥ =

⎧⎨⎩

⎡⎣ 1

−1
−1

⎤⎦ :  ∈ R
⎫⎬⎭ 

If  = 2 or 3, then   = kk2 kk2 cos() where  is the angle between the
two vectors. A generalization of the "angle" between two vectors   ∈ R is

cos() ≡  

kk2 kk2
where kk2 = ()12

17
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This is based on the Cauchy inequality.

Definition 2 The Cauchy Inequality is¯̄
 

¯̄
≤ kk2 kk2 

The inequality follows from the quadratic function of the real parameter

() ≡ (+ ) (+ )

Let 0 =
− 
 

, which gives the minimum of (),

0 ≤ (0) = − (
 )2

 


Then ( )2 ≤    = kk22 kk22 and

−1 ≤  

kk2 kk2
≤ 1

Hence, the expression  is perpendicular to  means   = 0

Theorem 3.1.1 Let  be a vector space in R The following hold:
1. ⊥ is a subspace of R
2. ⊥⊥ =

3. ⊥ ∩ = {0×1} and
4. ⊥ + = R

Proof. The proof of the first item requires the⊥ to be closed under addition
and scalar multiplication. If  b ∈⊥, then

( + b) = + b = 0 + 0 = 0
If  ∈⊥ and  ∈ R then

() = () = 0 = 0

The proofs of the second and third items are easy.

The proof of the last item uses the projection of any  ∈ R into   ()

By Theorem 1.4.1 for all  ∈

 (− () + ) = 0

This means − () +  ∈⊥ and  = ( −  ()) +  () ∈⊥ +
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3.2 Fundamental Theorem: R = () +( )

An illustration of the next theorem is given in Section 2.1 in Examples 1 and 2

and Remarks 3 and 4. In the general case,  is ×  and  = () ⊂ R
The fourth part of Theorem 3.1.1 gives R = () +()⊥

Theorem 3.2.1 If  : R → R with rank() =  then  : R → R and
() = ( )⊥ ( ) = ()⊥
R = () +( ) R = ( ) +()

dim(( )) =  dim(()) =  and

dim(()) = −  dim(( )) = − 

Proof. The main step is to show () = (( ))⊥ Suppose  ∈ () and

show  ∈ (( ))⊥

 = 0×1
 () = 0×1 for all  ∈ R
( ) = 0

Suppose  ∈ (( ))⊥ and show  ∈ () Then for all  ∈ R ( ) =

 () = 0 Choose  =  ∈ R to be any unit vector to get

 () = 0

[] = 0 and consequently

 = 0×1

Apply the above argument to  to get ( ) = ()⊥ The remaining
conclusions for both  and  follow from Theorems 2.2.1, 2.2.2 and 3.1.1.

The fundamental theorem can be used to analyze least squares problems

with multiple solutions. Theorem 1.4.2 showed multiple least squares solution

have the form  = b +  where b = ()() and any  ∈ () The

above Theorem 3.2.1 gives b = b + b with b = ( )(b) ∈ ( ) andb ∈ ()

Theorem 3.2.2 If b = ()() then b = ( )(b) is a least squares
solution of  =  and (b) b is the smallest of least squares solutions.
Proof. b+ = b+b + is a least squares solution. Choose  = −b
to conclude b is a least squares solution. By Theorem 3.2.1 bb = 0

b b = (b + b ) (b + b )
= bb + 2bb + bb
= bb + 0 + bb
≥ bb
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Figure 3.2.1: All Least Squares Solutions

Example 2 Return to Examples 7 and 8 in Sections 1.3 and 1.4 and also

Section 7.1.  =

⎡⎣ 1 2

2 4

3 6

⎤⎦   =

∙
1 2 3

2 4 6

¸
and b = ∙

2614

0

¸
 The

basis for ( ) is 1 =

∙
1

2

¸


b = 

∙
1

2

¸
= ( )(b)£

1 2
¤


∙
1

2

¸
=

£
1 2

¤ ∙ 2614
0

¸
This gives  = 1335 and b

b = ∙ 13352635

¸


In Example 8 the general solution is

b = ∙ 2614
0

¸
+ b ∙ 2

−1
¸

Choose b so that b b is a minimum to get b. The set of all least squares
solutions is depicted in Figure 3.2.1.
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3.3 A = QR Factorization

Any basis can be transformed into an orthonormal basis, whose vectors are

perpendicular and unit length. This can be extended to general inner product

spaces via the Gram-Schmidt method. Here we will use the  factors of 

The  factors are also useful in efficiently solving the normal equations.

Definition 3 Let  be × .  =  is a QR factorization if and only if

(i).  is ×  with  =  and

(ii).  is ×  with  being upper triangular.

The columns of  are orthonormal. If the diagonal of  is not zero, then

 is nonsingular and −1 =  In the next section, this will be useful in

construction of an orthonormal basis from a given basis.

Theorem 3.3.1 Let  be  × . If  has full column rank, rank() =  ,

then

1. −1 exists and
2. the normal equation reduces to  = 

Proof. If  = 0×1 then

() = 0×1 and

 = 0×1

Because  has full column rank,  = 0×1 and  is nonsingular.

Consider the normal equations.

 = 

() () = ()

 () = 

 = 

Because  is nonsingular,  is also nonsingular and  = 

In order to find the  factors, write  =  as a sequence of equal column

vectors

£
1 2 · · · 

¤
=

£
1 2 · · · 

¤
⎡⎢⎢⎢⎣

11 12 · · · 1
22 · · · 2

. . .
...



⎤⎥⎥⎥⎦ 
1 = 111

2 = 112 + 222

3 = 113 + 223 + 333
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We can find 1 and 11 and then 12 and 13 as follows

1 1 = 1 1
2
11 = 1

2
11

2 1 = (112 + 222)
 1

= 112 + 022 and

3 1 = (113 + 223 + 333)
 1

= 113 + 023 + 033

Now reduce the dimension from  to − 1 by moving the first column to the
left side

1 − 111 = 0

2 − 112 = 222

3 − 113 = 223 + 333

This procedure can be programmed as is illustrated in the next section.

Example 3 Return to Example 1 in Section 1.1 where

 =

⎡⎣ 1 1

1 2

1 3

⎤⎦ and  =

⎡⎣ 10

9

7

⎤⎦ 
1 =

⎡⎣ 1

1

1

⎤⎦ gives 1 =

⎡⎣ 1
√
3

1
√
3

1
√
3

⎤⎦ and 11 =
√
3

2 =

⎡⎣ 1

2

3

⎤⎦ gives 12 = 2 1 = 6
√
3

b2 = 2 − 112 =

⎡⎣ 1

2

3

⎤⎦−
⎡⎣ 1

√
3

1
√
3

1
√
3

⎤⎦ 6√3 =
⎡⎣ −10

1

⎤⎦
2 =

⎡⎣ −1√20

1
√
2

⎤⎦ and 22 =
√
2

The  factors and the normal equations are

 = 

=

⎡⎣ 1
√
3 −1√2

1
√
3 0

1
√
3 1

√
2

⎤⎦∙ √3 6
√
3

0
√
2

¸
and

 =  ∙ √
3 6

√
3

0
√
2

¸ ∙
1
2

¸
=

∙
1
√
3 1

√
3 1

√
3

−1√2 0 1
√
2

¸⎡⎣ 10

9

7

⎤⎦ = ∙ 26
√
3

−3√2
¸
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The solution of this is 2 = −32 and 1 = 353 which agrees with the calcu-

lation in Example 1

3.4 MATLAB Code qr_col.m

The sample inputs are given in lines 18-24. Note the matrix in line 20 will give

an error because the columns are not linearly independent. The algorithm is

executed in lines 25-35. This is the column version where the columns are moved

to the left side in the loop starting at line 31. Lines 38-43 give the output, verify

the factorization and compare the calculation with the two MATLAB intrinsic

commands.

1 % This code finds the qr factorization of a matrix.

2 % The column version of the Gram-Schmidt method is

3 % used to generate the small qr factors.

4 % a is mxn, q is mxn and r is nxn where m>n and

5 % q’*q = eye(n)

6 %

7 % [a1 a2 a3 ...] = [q1 q2 q2 ...][r11 r12 r13 ...]

8 % r22 r23 ...]

9 % r33 ...]

10 % OR

11 %

12 % a1 = q1 r11

13 % a2 = q1 r12 + q2 r22

14 % a3 = q1 r13 + q2 r23 + q3 r33

15 %

16 clear

17 %

18 % Input data

19 %

20 % a = [1 1 3; 1 2 4 ; 1 3 5; 1 4 6]

21 % Above fails because a3 = 2 a1 + a2!

22 a = [1 1;1 2; 1 3]

23 q = a;

24 [m n] = size(a)

25 %

26 % Execute the column version

27 %

28 for k = 1:n

29 r(k,k) = (q(:,k)’*q(:,k))^.5;

30 q(:,k) = q(:,k)/r(k,k);

31 for j = k+1:n

32 r(k,j) = a(:,j)’*q(:,k);

33 q(:,j) = q(:,j) - q(:,k)*r(k,j);
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34 end

35 end

36 %

37 % Output Q R factors and compare with qr()

38 %

38 q

40 r

41 q*r

42 [Q R] = qr(a) % fat version

43 [Q1 R1] = qr(a,0) % skinny version

>> qr_col

a =

1 1

1 2

1 3

m =

3

n =

2

q =

0.5774 -0.7071

0.5774 -0.0000

0.5774 0.7071

r =

1.7321 3.4641

0 1.4142

A =

1 1

1 2

1 3

Q =

-0.5774 0.7071 0.4082

-0.5774 -0.0000 -0.8165

-0.5774 -0.7071 0.4082

R =

-1.7321 -3.4641
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0 -1.4142

0 0

Q1 =

-0.5774 0.7071

-0.5774 -0.0000

-0.5774 -0.7071

R1 =

-1.7321 -3.4641

0 -1.4142

3.5 Orthonormal Basis

The  factorization can be used to generate an orthonormal basis.

Definition 4 A basis {1  } in R is orthonormal if and and if

(i). 
  = 1 for all 1 ≤  ≤  and

(ii). 
  = 0 when  6= 

Remark. Let  =
£
1 · · · 

¤
be an ×  matrix.  =  means

the columns are orthonormal.

Theorem 3.5.1 Any basis of an  dimensional subspace  ⊂ R can be used

to generate an orthonormal basis of  Moreover, this basis can be extended to

an orthonormal basis of R

Proof. Let  be an ×  matrix formed by the column vectors of the basis

for  ⊂ R. Since the basis vectors are linearly independent,  has full column
rank and  =  where  is nonsingular. We claim the columns of  are an

orthonormal basis. First, note the columns of  are linearly independent. Let

 = (−1) = (−1) = 0×1

Since  has full column rank, −1 = 0×1 Then  = 0×1 and the columns
are linearly independent. Second, the columns span the subspace  ⊂ R Let
 ∈  = () and

() =  and choose b = ()

(b) =  means  is a linear combination of the columns of 

Example 4 Consider the 3 × 4 matrix considered in Examples 1 and 2 in
Section 2.1

 =

⎡⎣ 1 1 2 3

2 2 8 10

3 3 10 13

⎤⎦ 
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() =

⎧⎨⎩1

⎡⎣ 1

2

3

⎤⎦+ 2

⎡⎣ 2

8

10

⎤⎦ : 1 2 ∈ R
⎫⎬⎭

( ) =

⎧⎨⎩

⎡⎣ −1−1
1

⎤⎦ :  ∈ R
⎫⎬⎭

Find the  factorization of the 3× 2 matrix from the basis of ()

£
1 2

¤
=

⎡⎣ 1 2

2 8

3 10

⎤⎦
=

£
1 2

¤ ∙ 11 12
0 22

¸

=

⎡⎣ 1
√
14 −10√168

2
√
14 8

√
168

3
√
14 −2√168

⎤⎦∙ √14 48
√
14

0
√
1687

¸


The orthonormal basis is 1 2 In order to extend this to all of R3 = () +

( ), choose 3 =
£ −1 −1 1

¤
 Since this is already perpendicular to

both 1 2 and we only need to normalize it to get a third basis vector⎡⎣ −1√3−1√3
1
√
3

⎤⎦ 
If 3 is not perpendicular to both 1 2 then continue with the  procedure

3 = 113 + 223 + 333

For example, suppose 3 =
£
0 0 1

¤
and compute

3 1 = 13 = 3
√
14

3 2 = 23 = −2
√
168b3 = 3 − 113 − 223

=

⎡⎣ −13−13
13

⎤⎦ with 33 = 1
√
3 and

3 =

⎡⎣ −1√3−1√3
1
√
3

⎤⎦ 



Chapter 4

Eigenvectors and

Orthonormal Basis

Another way to find orthonormal vectors is to consider eigenvectors of a sym-

metric matrix. An important case is  in the normal equations, and this will

form the core the singular value decomposition of an × matrix  = Σ  

For this chapter the spectral theorem for real symmetric  ×  matrices gives

 =  where  is the diagonal of eigenvalues and the columns of  are

the corresponding eigenvectors.

4.1 Eigenvectors of Symmetric Matrix

Let  = [ ] be an ×  real symmetric matrix ( =  for 1 ≤   ≤ , or

 = ). Eigenvectors play an important role in generating orthonormal bases.

The matrix in least squares problem generally are not symmetric. However, the

 in the normal equations is because () =  =  Another

important class of symmetric matrices come from differential equation. For

example, consider − =  on the interval [0 ] with boundary conditions

(0) = 0 = () A finite difference approximation for  ∼= (∆) with  = 4

and ∆ =  is

⎡⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤⎦⎡⎣ 1
2
3

⎤⎦ = ∆2
⎡⎣ (1)

(2)

(3)

⎤⎦ 
Definition 1 Let  be an  ×  matrix. The eigenvector,  ∈ C associated
with an eigenvalue,  ∈ C, is a nonzero vector such that  = 

27
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An eigenvector is an element of the nullspace of − 

−  = 0×1
−  = 0×1
(− ) = 0×1

Since  is a nonzero vector, det( − ) = 0 This allows us to solve for the

eigenvalues and then the corresponding solutions of (− ) = 0×1

Example 1 Let  =

∙
1 −2
1 3

¸
 This matrix is not symmetric and has com-

plex numbers for eigenvalues.

det(− 2) = det(

∙
1−  −2
1 3− 

¸
)

= 2 − 4+ 5 = 0
and  = 2 +  2−  with  ≡ √−1

Example 2 Let  =

∙
1 2

2 4

¸
 This matrix is symmetric and does not have

an inverse.

det(− 2) = det(

∙
1−  2

2 4− 

¸
= 2 − 5 = 0

and  = 0 5

Find the eigenvector associated with  = 0

(− 02) = 02∙
1 2

2 4

¸ ∙
1
2

¸
=

∙
0

0

¸
gives∙

1
2

¸
=

∙
2

−1
¸


Find the eigenvector associated with  = 5

(− 52) = 02∙ −4 2

2 −1
¸ ∙

1
2

¸
=

∙
0

0

¸
gives∙

1
2

¸
=

∙
1

2

¸


Note the eigenvalues are real, distinct and the eigenvectors are perpendicular.

Since a nonzero multiple of an eigenvector is also an eigenvector, we normalize

the eigenvectors to get an orthonormal basis of R2

1 =

∙
2
√
5

−1√5
¸
and 2 =

∙
1
√
5

2
√
5

¸
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Theorem 4.1.1 If  is symmetric and has real components, then

1. all the eigenvalues are real and

2. eigenvectors with different eigenvalues are orthogonal.

Proof. Let  ∈ C  ∈ C and  =  Use the notation

∗ ≡  and ∗ ≡ 

= []

 real and symmetric means  =  so that 
∗ = 

In order to show  is real, show  =   =  implies ∗ = ∗
Also,  = ,  =  and  =   Hence, ∗ = ∗ Since  is a
nonzero vector, ∗ 6= 0 and  = 

In order to show eigenvectors with different eigenvalues must be orthogonal,

assume  = , b = bb and  6= b
b = b = b
b =  bb = bb

Since  is symmetric, b =  b = () b = b This means b =bb and (− b)b = 0 Because  6= b b = 0
4.2 Spectral Theorem Factors  = 

Example 2 in the previous section shows there exists two orthonormal eigen-

vectors such that

1 = 01 and 2 = 52

The matrix form of this is


£
1 2

¤
=

£
1 2

¤ ∙ 0 0

0 5

¸
with

£
1 2

¤ £
1 2

¤
=

∙
1 1 1 2
2 1 2 2

¸
=

∙
1 0

0 1

¸


So, this 2 × 2 matrix has the form  =  where  is the matrix of the

orthonormal eigenvectors and the  is the diagonal matrix of the corresponding

eigenvalues. We shall show this is true for any symmetric ×  matrix.

Definition 2 Let  be an  ×  matrix  is called diagonalizable if only if

there exists an orthonormal ×  matrix  such that

 =  and  is an ×  diagonal matrix.

The following proof is does not construct the eigenvectors, but it does show

the existence of the desired eigenvectors. Numerical linear algebra is used to find

the eigenvectors, and the MATLAB command eig(A) is a good implementation

of these methods.
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Theorem 4.2.1 All real symmetric ×  matrices are diagonalizable.

Proof. Mathematical induction on  will be used to prove this. Choose one

eigenvector  where  =  and 1 ≡ ()12 By Theorem 3.5.1 extend

this to an orthonormal basis for all of R

2 · · ·   with   = 1 

  = 0 and  6= 

Let  ≡ £ 1 2 · · · 
¤
so that

 =

⎡⎢⎢⎢⎣
 1 2 · · · 1 

2 1 2 2 · · · 2 
...

...
. . .

...

1 2 · · · 

⎤⎥⎥⎥⎦ 
Since  =   1  = (1)

  = (1)
  = 0 for 2 ≤  ≤ 

 =

∙
 01×(−1)

0(−1)×1 b
¸


Since  =  , the (− 1)× (− 1) matrix b is also symmetric.
If  = 2 then b = 2 2 and

 =

∙
 01×(−1)

0(−1)×1 2 2

¸


If the proposition is true for (− 1)× (− 1) matrices, apply it to b
b b b = b. Then
 =

∙
 01×(−1)

0(−1)×1 b b b
¸
and for  ≡

∙
1 01×(−1)

0(−1)×1 b

¸
= 

∙
 01×(−1)

0(−1)×1 b
¸
 

Let e ≡  and note it is an orthonormal ×  matrix and satisfies

e e = ∙  01×(−1)
0(−1)×1 b

¸


4.3 Application to Nonsingular  = 

Eigenvectors are very useful in a number of problems. In this section they

will be used to find solution of algebraic problems where there  unknowns, 
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equations and the associated matrix is nonsingular. Provided one knows the

eigenvectors and eigenvalues, this requires very few computations relative to

Gauss elimination. This technique also generalizes to self adjoint boundary

value problems.

Assume the matrix in the algebraic problem  =  is nonsingular, real

and symmetric. Then the eigenvalues must be real and nonzero. Choose the

orthonormal eigenvectors and eigenvalues

 =  with 1 ≤  ≤  and  6= 0

Since  ∈ R and the eigenvectors are a basis,

 =

X
=1

 

Since the eigenvectors are orthonormal,

  = 

X
=1

 =

X
=1



  = 

The solution must also be a linear combination of the eigenvectors

 =

X
=1

b 
 = 

X
=1

b
=

X
=1

b
=

X
=1

b
Since  =

P
=1  =

P
=1(


 ) and by the linear independence, 


  =b  Since  6= 0 b =  

Not counting the cost of finding the eigenvalues, this requires  inner prod-

ucts,  , and  divisions. This is in contrast to Gauss elimination, which

requires about 33 operations. If one has a large sequence of algebraic prob-

lems all with the same matrix and and number of right hand sides, then the the

eigenvectors and eigenvalues only need to be found once. Also, for some special

matrices, these may be easily found.





Chapter 5

Singular Value

Decomposition

In this chapter we consider the more general  ×  real matrix  and its

factorization Σ  . The factors satisfy the following:  is ×,  = ,

 is ×,   =  and Σ is × This is the "full" SVD. First, we establish

the "small" version. Then the "full" and "truncated" versions are described.

Definition 1 The ("full") SVD factorization of  is  = Σ  where

 is × = 

 is ×    = 

Σ is ×  where Σ =

∙
Σ 0×(−)

0(−)× 0(−)×(−)

¸
and

Σ =

⎡⎢⎣ 1
. . .



⎤⎥⎦ with 1 ≥ · · · ≥   0

5.1 "Small" SVD

Assume rank() =  with 1 ≡ (1 :  1 : )  ×  and 1 ≡ (1 :  1 : )

×  matrices. The "small" SVD is

 = 1Σ

1

where 
1 1 = , 


1 1 =  and Σ is an × is diagonal matrix with positive

diagonal components. The existence of these factors will be established in

Theorem 5.1.1 and uses the existence of orthonormal eigenvectors for symmetric

matrices via Theorem 4.2.1.

33
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The columns of 1 are a basis for () This follows from 1 = 1Σ and

Σ−1
1Σ

−1
 = 1

So the columns of 1 are in() The columns are orthonormal, dim(()) = 

are a basis of () Likewise, 1Σ
−1
 = 1 and the columns of 1 are an

orthonormal basis of ( ) and dim(( )) = 

Theorem 5.1.1 If  is  ×  with rank() =  then 1, 1 and Σ exists

where

 = 1Σ

1 

1 is ×  
1 1 = 

1 is ×   
1 1 =  and

Σ =  ×  nonsingular diagonal matrix.

Remark. Multiply  = 1Σ

1 on the right by 1 to get 1 = 1Σ In

other words,  =  where  are × 1 with 1 =
£
1 · · · 

¤
and 

are × 1 with 1 =
£
1 · · · 

¤


Proof.  is a real symmetric  ×  matrix. By Theorem 4.2.1 there are

orthonormal eigenvectors. Let  be anyone of these  =  where  6= 0×1
and  6= 0 Then

() =  and

( ) = 

Note   = 1 and  =  implies

 =   and

() () =  6= 0
Thus,   0  6= 0×1 and  is an eigenvector of   Write  = 2
and ()

 () = 2  Let 1 have columns of the orthonormal eigenvectors of



Define the columns of 1  from the columns of  as follows

 ≡ 




 are eigenvalues of 
 :

 = 2 

() = (2 )

 () = 2 () and

 (



) = 2 (




)
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 are unit vectors:

 = 2 

 (
) =  (

2
 )

()
 () = 2 and

(



) (




) = 1

 are orthogonal:

  = (



) (




)

=
 






=
 (

)




=
 (

2
)


and for  6= 

= 0

Define the matrices 1 and 1 where 1 ≤   ≤ 

1 ≡
£
1 · · · 

¤
and 1 ≡

£
1 · · · 

¤


Since  =  1 = 1Σ and  = 1Σ

1 

Example 1  =

∙
2 2

−1 1

¸
where rank() = 2 = 2 and  = 2 () =

{02×1} and ( ) = {02×1}

 =

∙
5 3

3 5

¸
and det(

∙
5−  3

3 5− 

¸
) = 0

This gives 1 = 8 1 = 2
√
2 and 2 = 2 2 =

√
2 so that

1 =

∙
1

1

¸

√
2 and 2 =

∙
1

−1
¸

√
2

1 =
1

1
=

∙
1

0

¸
and 2 =

2

2
=

∙
0

−1
¸


1Σ2

1 =

∙
1 0

0 −1
¸ ∙

2
√
2 0

0
√
2

¸ ∙
1
√
2 1

√
2

1
√
2 −1√2

¸
=

∙
2 2

−1 1

¸
= 
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5.2 "Full" SVD

The "full" SVD  = Σ  has orthonormal matrices ×  , ×   and

× 

Σ =

∙
Σ 0×(−)

0(−)× 0(−)×(−)

¸


The "full" SVD version requires the augmentation of ×  1, ×  1 in the

"small" SVD.

Theorem 5.2.1 If  is ×  with rank() = , then the "full" SVD exists.

Proof. In the "small" SVD the columns in 1 and 1 form bases of ()

and ( ), respectively. By Theorem 3.2.1 R = ( ) + () and R =

() + ( ) By Theorem 3.5.1 we can extend the orthonormal bases of

( ) and () to all of R and R, respectively. Let  be the orthonormal

augmentation of 1 so that the the columns of (1 :  ( + 1) : ) are an

orthonormal basis of ( ) Likewise, let  be the orthonormal augmentation

of 1 so that the the columns of  (1 :  ( + 1) : ) are an orthonormal basis

of ()

Next we show  = Σ

 =  [1  (1 :  ( + 1) : )]

=
£
1Σ 0×(−)

¤


Σ = [1 (1 :  ( + 1) : )]

∙
Σ 0×(−)

0(−)× 0(−)×(−)

¸
=

£
1Σ 0×(−)

¤


Example 2  =

∙
1 1

2 2

¸
where  =  = 2 and rank() = 1.

 =

∙
5 5

5 5

¸
and det(

∙
5−  5

5 5− 

¸
) = 0 implies

1 = 10, 1 =
√
10 and 2 = 0, 2 = 0

The first eigenvectors are

1 =

∙
1
√
2

1
√
2

¸
and

1 =
1

1
=

∙
1
√
5

2
√
5

¸


This gives the "small" SVD

11

1 =

∙
1
√
5

2
√
5

¸√
10
£
1
√
2 1

√
2
¤
=

∙
1 1

2 2

¸
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The "full" SVD uses the 2 basis for ()

2 =

∙
1
√
2

−1√2
¸
and

the 2 basis for (
 )

2 =

∙ −2√5
1
√
5

¸


Σ  =
£
1 2

¤ ∙ 1 0

0 0

¸ ∙
1
2

¸
=

∙
1
√
5 −2√5

2
√
5 1

√
5

¸ ∙ √
10 0

0 0

¸ ∙
1
√
2 1

√
2

1
√
2 −1√2

¸
=

∙
1 1

2 2

¸


Example 3  =

⎡⎢⎢⎣
1 1 2

1 2 3

1 3 4

1 4 5

⎤⎥⎥⎦ has rank() = 2 = ,  = 4 and  = 3 The

"full" SVD has the form

 = Σ 

=
£
1 2 3 4

¤⎡⎢⎢⎣
1 0 0

0 2 0

0 0 0

0 0 0

⎤⎥⎥⎦
⎡⎣ 1

2
3

⎤⎦

=
£
11 22 04×1

¤⎡⎣ 1
2
3

⎤⎦
= 11


1 + 22


2 

The MATLAB command svd(A) can be used to do these calculations, and this

is illustrated in the next section.

5.3 MATLAB Code svd_ex.m

Line 9 inputs the matrix in Example 3. The MATLAB command [U S V]

= svd(A) in line 14 computes the three factors. The eigenvectors of  are

computed in line 24 using [VV Lam_v] = eig(A’*A). Lines 14 and 26-31 confirm

the properties of the SVD.



38 CHAPTER 5. SINGULAR VALUE DECOMPOSITION

1 % SVD of a 4x3 Example.

2 % The rank of this matrix is r = 2.

3 % Then the dim(N(A)) = 1 and dim(N(A^T)) = 2.

4 %

5 clear

6 %

7 % Input data

8 %

9 A = [ 1 1 2; 1 2 3; 1 3 4; 1 4 5]

10 %

11 % Compute the SVD of A using Matlab.

12 %

13 display(’Find the svd factors via the Matlab command svd()’)

14 [U S V] = svd(A)

15 %

16 % Check the properties of SVD.

17 %

18 display(’Check A - U*S*V^T is a zero matrix.’)

19 A - U*S*V’

20 display(’Compute the eigenvectors and

eigenvalues of A^T A and A A^T.’)

21 display(’Lam_u = Lam_v.’)

22 display(’NOte, s(1,1) = sqrt(Lam_u(4,4) and

s(2,2) = sqrt(Lam_u(3,3) and’)

23 display(’the change in order.’)

24 [VV Lam_v] = eig(A’*A)

25 [UU Lam_u] = eig(A*A’)

26 display(’The last column of V is the

orthonormal basis of N(A).’)

27 display(’A V = ’)

28 A*V

29 display(’The last two colums of U form the

orthonormal basis N(A^T).’)

30 display(’A^T U = ’)

31 A’*U

>> svd_ex

A =

1 1 2

1 2 3

1 3 4

1 4 5

Find the svd factors via the Matlab command svd()
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U =

-0.2524 -0.7977 0.0985 0.5388

-0.3990 -0.3752 0.2703 -0.7918

-0.5457 0.0473 -0.8360 -0.0328

-0.6923 0.4698 0.4672 0.2858

S =

9.3441 0 0

0 0.8290 0

0 0 0.0000

0 0 0

V =

-0.2022 -0.7911 0.5774

-0.5840 0.5706 0.5774

-0.7862 -0.2204 -0.5774

Check A - U*S*V^T is a zero matrix.

=

1.0e-14 *

0 0 -0.0888

0 -0.0444 -0.0888

0.0111 -0.0888 -0.0888

-0.0222 -0.1776 -0.0888

Compute the eigenvectors and eigenvalues of A^T A and A A^T.

Lam_u = Lam_v.

NOte, s(1,1) = sqrt(Lam_u(4,4) and s(2,2) = sqrt(Lam_u(3,3) and

the change in order.

VV =

0.5774 0.7911 0.2022

0.5774 -0.5706 0.5840

-0.5774 0.2204 0.7862

Lam_v =

-0.0000 0 0

0 0.6872 0

0 0 87.3128

UU =

-0.4877 0.2494 -0.7977 0.2524

0.8361 0.0310 -0.3752 0.3990
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-0.2092 -0.8101 0.0473 0.5457

-0.1392 0.5297 0.4698 0.6923

Lam_u =

-0.0000 0 0 0

0 0.0000 0 0

0 0 0.6872 0

0 0 0 87.3128

The last column of V is the orthonormal basis of N(A).

A V =

-2.3585 -0.6612 0.0000

-3.7287 -0.3110 0.0000

-5.0989 0.0392 0.0000

-6.4690 0.3894 0.0000

The last two colums of U form the orthonormal basis N(A^T).

A^T U =

-1.8894 -0.6558 0 -0.0000

-5.4568 0.4730 0 -0.0000

-7.3462 -0.1827 0 -0.0000

5.4 "Truncated" SVD

The "truncated" SVD is formed from the "small" SVD by dropping the latter

columns of 1 = (: 1 : ) and 1 =  (: 1 : )

 ∼= () ≡ (: 1 : )Σ (: 1 : )
 with    = rank()

Σ is the  ×  diagonal matrix with components 1 ≥ · · · ≥   0 An

alternate way of writing this is

() =

X
=1



 where

( :  1 : ) =
£
1 · · · 

¤
and

 ( :  1 : ) =
£
1 · · · 

¤


An important observation is the first  columns only require the first  eigen-

vectors of 

Both  and () are× matrices. In order the quantify the error in using
the "truncated" SVD, introduce the 2-norm of any linear operator  : R →
R represented by an  ×  matrix. The error will then be measured by°°−()

°°2
2
where k∗k2 is the 2-norm.
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Definition 2 kk22 ≡ max
 6=0×1

() ()



= maxb b=1(b) (b) where b ≡ 
()12



The 2-norm of  gives an upper bound on 

kk2 ≤ kk2 kk2 
Theorem 5.4.1 Let  be an ×  with rank() =  

 =
P

=1



 be the "small" SVD and

() =
P

=1



 be the "truncated" SVD where  l 

Then kk22 = 21 and
°°−()

°°2
2
= 2+1.

Proof. Let  = {1 · · ·  } be the orthonormal basis of eigenvectors for
 Order the eigenvectors so that () =  = 2 

First, we show kk22 ≥ 21 :

Choose  = 1

kk22 = max
=1

() ()

≥ 1 
1

= 1 11

= 11 = 21

Second, show kk22 ≤ 21 :

Let  =

X
=1

 with  = 1 Then

1 =  = (

X
=1

)
 (

X
=1

) =

X
=1

2 and

 =

X
=1

 

 = (

X
=1

)
 (

X
=1

)

=

X
=1

21 and use  ≤ 1

≤ (

X
=1

2 )1

= 11 = 21

kk22 = max
=1

() () ≤ max
=1

21 = 21
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Consider −() where    and note

−() =

X
=1



 −

X
=1





=

X
=+1



 

This is the "small" SVD of −() and therefore
°°−()

°°2
2
= 2+1.

Example 4 Consider Example 3 and the MATLAB code svd_ex.m. Here  is

4×3, rank() = 2 and we let the truncation be  = 1 The following calculations
verify Theorem 5.4.1:

>> norm(A) =

9.3441

>> S(1,1)

9.3441

>> A1 = U(:,1)*S(1,1)*V(:,1)’

0.4769 1.3773 1.8543

0.7540 2.1775 2.9314

1.0310 2.9776 4.0086

1.3081 3.7778 5.0858

>> norm(A - A1) =

0.8290

>> S(2,2)

0.8290



Chapter 6

Three Applications of SVD

The last theorem of the previous chapter suggests the "truncated" SVD can be

used to approximate the original matrix. Three important applications will be

illustrated for image compression, search engines and noise filters. Additional

applications will be given to the general least squares problem in Chapter 7, to

hazard identification in Chapter 8, and to epedimic models in Chapter 9.

6.1 Image Compression

Grayscale images are associated with  ×  matrices whose components are

integers. For 8-bit images the integers range from 0 to 255 = 28 − 1, and for
16-bit images they range from 0 to 65535 = 216 − 1. The black image pixel
is associated with 0, and the white image pixel is associated with 255 (8-bit)

or 65535 (16-bit). In MATLAB one can “view” the image in several ways.

First, just inspect the matrix components. Second, use the MATLAB command

mesh() to generate a surface of the image where the indices of the matrix are

on the xy-plane and the intensity of the image is on the z-axis. Third, one can

map the matrix into a standard image file such as a *.jpg file. This can be done

by the MATLAB command imwrite(). The inverse of the imwrite() is imread(),

which generates a 8-bit integer matrix from an image file.

Additional material on image compression and image processing can be

found in [3] and in the last two chapters in [14]

Example 1 We will create alphabetical letters from 50 × 40 matrices. The

letter "U" can be created by defining a 50 × 40 matrix to initially be zero and
then nonzero for some components to form the letter. This will produce a letter

with black background and with lighter regions to form the letter. The following

MATLAB function defines the letter "U" where the lighter region has an input

value equal to .

43



44 CHAPTER 6. THREE APPLICATIONS OF SVD

1 function letu = letteru(g)

2 letu = zeros(50,40);

3 letu(10:40,4:8) = g;

4 letu(10:40,32:36) = g;

5 letu(10:14,4:36) = g;

The general scheme is to convert the image to a matrix, modify the matrix

and then to convert the modified matrix back to a new image. The operation of

light/dark corresponds to multiplying the matrix by a constant less/larger than

one. The operation of cropping/panorama corresponds to deleting/augmenting

rows or columns of the matrix. In image compression we use the "truncated"

SVD of the image matrix. A "truncated" SVD of and  ×  image matrix

requires  +  +  storage of the  eigenvectors and singular values. If

   then this is a lot less than  for the full image matrix.

Example 2 In this example three letters are created by functions similar to

the letter function letteru(g) to form the matrix  and then the image USA.

The mesh plot of the matrix is given in Figure 6.1.1, the image USA with

black background is in Figure 6.1.2, and the "negative" of the image USA with

white background is in Figure 6.1.3. The "negative" is created by replacing

the components in the matrix  by 255 − ( ), that is, ( ) =

255 − ( ) The following MATLAB code imagusa.m was used to generate

these figures.

1 usa = [letteru(6) letters(9) lettera(12)];

2 mesh(usa)

3 newusa = 20*usa;

4 newusa = newusa(50:-1:1,:);

5 negusa = 255*ones(size(newusa)) - newusa;

6 newusa1 = uint8(newusa);

7 imwrite(newusa1, ’usa.jpg’);

8 negusa1 = uint8(negusa);

9 imwrite(negusa1, ’negusa.jpg’);

6.2 MATLAB Code svdimage.m

Line 16 converts the image to an image matrix. Lines 22, 23 and 27 create

the scaled image in the upper left in Figure 6.2.1. The "full" SVD of the

image matrix is computed in line 35, and the "truncated" SVD with  = 20 is

computed in line 39. This is displayed in the upper right in Figure 6.2.1. The

loop in lines 50-59 varies the  = 1 : 2 : 40 and displays the images in the lower

left in Figure 6.2.1 (requires one to hit the space bar). The lines 64-68 illustrate

how to use portions of the SVD to "sharpen" the resulting image matrix. The

reader will find it interesting to experiment with this and compare the images

in the lower right in Figure 6.2.1.
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Figure 6.1.1: USA Matrix via mesh()

Figure 6.1.2: USA jpg Picture

Figure 6.1.3: Negative of USA jpg Picture
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1 % This code illustrates several images, their associated

2 % matrices,SVD expansions and image enhancements. There are

3 % four modified images, which are obtained by converting the

4 % image (*.jpg) to a matrix of 64-bit double precision

5 % numbers, modifying the matrix by using the SVD expansion,

6 % and then converting the new matrix into a new image (*.jpg).

7 %

8 clear; clf

9 %

10 % Input data

11 %

12 % Select an image. X will be an mxn matrix with 8-bit

13 % components rangingfrom 0 (dark) to 255 = 2^8 - 1 (light).

14 % load detail

15 % X = imread(’moon.jpg’);

16 X = imread(’microchip.jpg’);

17 % X = imread(’pollen.jpg’);

18 % The command double(X) converts the components to double

19 % precision (64-bit) numbers. The scale factor adjusts

20 % the darkness of the image.

21 %

22 scale = 0.3;

23 X = scale*double(X);

24 %

25 subplot(2,2,1)

26 % This is the new image.

27 image(X)

28 colormap(gray(64))

29 axis image, axis off

30 r = rank(X)

31 title([’rank = ’ int2str(r)])

32 %

33 % Compute the SVD factors of X = u*s*v’.

34 %

35 [u s v] = svd(X,0);

36 %

37 subplot(2,2,2)

38 % This is the first 20 terms of the SVD expansion.

39 X20 = u(:,1:20)*s(1:20,1:20)*v(:,1:20)’;

40 image(X20)

41 colormap(gray(64))

42 axis image, axis off

43 r20 = rank(X20)

44 title([’rank = ’ int2str(r20)])

45 % 46 subplot(2,2,3)
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47 %

48 % This loop presents a sequence of partial SVD expansions.

49 %

50 for rnew = 1:2:40

51 Xnew = u(:,1:rnew)*s(1:rnew,1:rnew)*v(:,1:rnew)’;

52 image(Xnew)

53 colormap(gray(64))

54 axis image, axis off

55 rnew

56 title([’rank = ’ int2str(rnew)])

57 disp(’Hit the space bar to move to the next image.’)

58 pause

59 end

60 %

61 subplot(2,2,4)

62 % This modifies the last image by adding additional parts

63 % of the SVD expansion.

64 % Xnew = X;

65 for rr = 39-2:39

66 Xnew = Xnew + u(:,rr)*s(rr,rr)*v(:,rr)’;

67 end

68 image(Xnew)

69 colormap(gray(64))

70 axis image, axis off

71 title([’sharpen image’])

6.3 Search Engines

Consider searching for item  in document  Let  be the number of items and

 be the number of documents.

 = ×  frequency matrix

= [ ] where

 = the number of times item  appears in document .

Example 3 Suppose there are four items and two documents with

doc. 1 doc. 2

vector 4 1

matrix 0 7

real 3 2

complex 1 4

and define  =

⎡⎢⎢⎣
4 1

0 7

3 2

1 4

⎤⎥⎥⎦ 
The frequency matrix can be sparse and very very large. In order to search

for one or more items, we use a query vector

 = [] ∈ R where  = 1 for a single item 
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Figure 6.2.1: Image Compression Using SVD

Search for item  in document  (column  in ) by computing 
 , and then

normalize it by using the Cauchy inequality

−1 ≤ 

kk2 kk2
≤ 1

Definition 1 Let  =  be column  in the ×  frequency matrix 

cos() ≡ 

kk2 kk2


Example 4 Return to Example 3 and consider four query vectors.

 =
£
1 0 0 0

¤
gives cos(1) =

4√
26
and cos(2) =

1√
70


 =
£
0 1 0 0

¤
gives cos(1) =

0√
26
and cos(2) =

7√
70


 =
£
0 0 1 0

¤
gives cos(1) =

3√
26
and cos(2) =

2√
70
and

 =
£
1 0 0 1

¤
gives cos(1) =

5√
2
√
26
and cos(2) =

5√
2
√
70
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Because the components of  and  are nonnegative, 0 ≤ cos() ≤ 1 If
cos() is close to 1 then one can make a judgement that document  has

the items in the  Because the frequency matrix is very very large, we will

approximate it by the "truncated" SVD

 ≈ () =  ()Σ(
()) with   rank() = 

This gives a new cos()

 ()(Σ(
()) )

kk2
°° ()(Σ( ()) )

°°
2



Use the orthonormal property and define  ≡ Σ( ())  

Definition 2 First search engine approximation is

cos(1) ≡  ()

kk2 kk2


This approximation may have negative values, and the choice of  is a

judgement to be made. A variation is to project the query  to the range

of () In order to find this projection, use the orthonormal basis of (())

given by the columns of  () Theorem 1.4.1 yields

(())() =  () where ( ())  = 

In the first search engine replace  by (())() =  () =  ()( ())  Use

the orthonormal property and Theorem 1.4.1 to conclude

(())()
(())() = (( ()) ) (( ()) ) ≤   and

(())()
() =  () 

This gives the second version of search engine.

Definition 3 Second search engine approximation is

cos(2) ≡  ()°°( ()) °°
2
kk2

≥ cos(1)

Both search engines will be illustrated in the next section. The first code is a

simple example with small dimensions. The second code uses a 11 390× 1 265
frequency matrix, and there can be, for example, a significant difference in°°( ()) °°

2
= 715542 and

°° °°
2
= 23287

The search engine literature is extensive, but the reader may find the fol-

lowing to be useful: [2], [1] and [10].
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6.4 MATLAB Codes sengine.m, senginesparse.m

The first code, sengine.m, illustrates the effect of using variable, , truncation

of the SVD. The sample calculations are for smaller frequency matrices. One

case is for a 5× 6 matirx whose rank is 5 It is interesting to experiment with
different query vectors, 

Line 13 defines (it is not used) the frequency matrix for Example 1. In

lines 14-18 the larger frequency matrix is defined and uses in the subsequent

calculations. A query vector is defined in line 19, and the user of the code may

want to experiment with this. The SVD is calculated in line 24. The outer

loop in lines 29-43 varies the document number, . The inner loop varies the

truncation number,  The two search engine values for (1) and (2) are

computed inside these nested loops in lines 33 and 34.

1 %

2 % Search Engine

3 %

4 % The code uses the SVD to search an mxn frequency matrix

5 % where the the j-column contains the frequency of items in

6 % document j. This trival example illustrates two search

7 % methods and variable truncation of the SVD.

8 %

9 clear

10 %

11 %Input data

12 %

13 % A = [ 4 1;0 7;3 2;1 4]; % frequency matrix

14 A = [ 4 1 0 0 1 0;

15 0 7 0 1 2 0;

16 3 2 0 0 0 1;

17 1 4 1 0 3 2;

18 0 1 0 0 1 0];

19 q = [ 1 0 0 0 1]’; % query

20 r = rank(A); % rank of A

21 %

22 % Compute the SVD

23 %

24 [U S V] = svd(A);

25 [m n] = size(A);

26 S

27 % For each document (j) compute uss all the truncated SVDs.

28 % Compute both the versions of the cos theta.

29 for j = 1:n

30 for k = 1:r

31 Sv = S(1:k,1:k)*V(:,1:k)’;

32 SV = Sv(:,j);
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33 costhjone(k) = q’*U(:,1:k)*SV/(norm(q)*norm(SV));

34 costhjtwo(k) = q’*U(:,1:k)*SV/...

(norm(U(:,1:k)’*q)*norm(SV));

35 end

36 %

37 % Output all possible cos theta

38 %

39 display(’document = ’ )

40 j

41 display(’variable truncation for cos theta one and two =’)

42 [costhjone’ costhjtwo’]

43 end

>> sengine

S =

Columns 1 through 6

9.4508 0 0 0 0 0

0 4.7367 0 0 0 0

0 0 2.3673 0 0 0

0 0 0 1.2675 0 0

0 0 0 0 0.1883 0

document j =

1

variable truncation for cos theta one and two =

0.2609 1.0000

0.5461 0.9998

0.5459 0.9989

0.5556 0.6364

0.5547 0.5547

The second code, senginesparse.m, uses a larger frequency matrix. It is

11 390×1 265 and has 109 056 nonzero components. The rank of the frequency
matrix is 988 and the SVD is truncated after  = 20 The graphs of the two

search engines, cos(1) and cos(2) are given in Figure 6.4.2. For the particular

query in the code, four documents are identified has having the query.

The frequency matrix is imported in lines 14-17. Truncated SVD with  =

20 is computed in line 24, and the query is defined in line 27. The singular

values are graphed by the command in line 25, see Figure 6.4.1 The loop in

lines 35-39 is over all documents, and both cos(1) and cos(2) are computed

for each document,  The output is given graphical form in Figure 6.4.2.
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1 %

2 % Search Engine Sparse

3 %

4 % The code uses the SVD to search an mxn frequency matrix

5 % where the the j-column contains the frequency of items in

6 % document j. This sparse example two search methods

7 % and k = 20 truncation of the SVD.

8 %

9 clear

10 %

11 % Input data

12 %

13 % download webmatrix_uri % frequency matrix

14 svdmatrix = uiimport(’webmatrix_uri’);

15 SS = svdmatrix.data;

16 SS(1,:)

17 A = sparse(SS(2:109057,1), SS(2:109057,2), SS(2:109057,3));

18 [m n] = size(A);

19 display(’number of search items = ’)

20 m

21 display(’number of documents = ’)

22 n

23 r = rank(full(A)) % rank of full A

24 sig = svds(A,r);

25 plot(sig); title(’all singular values’)

26 % choose query q

27 q = zeros(m,1); q(2)= 4; q(55) = 2; q(60:110) = 10;

28 %

29 % For truncated SVD with k = 20 compute the cos theta for

30 % all documents.

31 %

32 for k = 20 % truncate svd after k

33 [U sig V] = svds(A,k);

34 Sv = sig(1:k,1:k)*V(:,1:k)’;

35 for j = 1:n;

36 SV = Sv(:,j);

37 costhjone(j) = q’*U(:,1:k)*SV/(norm(q)*norm(SV));

38 costhjtwo(j) = q’*U(:,1:k)*SV/...

(norm(U(:,1:k)’*q)*norm(SV));

39 end

40 end

41 [costhjone’ costhjtwo’];

42 %

43 % Graph the cos theta verse the documents

44 %
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Figure 6.4.1: All Singular Values

45 figure(2)

46 subplot(2,1,1) , plot(1:n, costhjone’)

47 axis([ 0 1400 -0.1 0.1])

48 title(’cos theta one’)

49 subplot(2,1,2) , plot(1:n, costhjtwo’)

50 axis([ 0 1400 -0.3 1.0])

51 title(’cos theta two’)

>> senginesparse

ans =

11390 1265 109056

m =

11390

n =

1265

r =

988
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Figure 6.4.2: Search Using Truncated SVD

6.5 Noise Filter

Consider a discrete signal  ∈ R There is some blurring ( an ×  matrix)

and some signal noise ( ∈ R). The data received ( ∈ R) is given by

 =  + 

The objective is to approximate  from the data  There are two problems: the

noise is not known, and the matrix inversion tends to be sensitive to variations

in the data.

The matrix  has exponential components

 =
h
−((−))

222
i
with  = 1.

It is nonsingular, but it has very small singular values, for example,  in the

next section has  = 42275 10
−7 The SVD of  = Σ

 has three × 

matrices and   0 Use the orthonormal properties to get

−1 =  Σ−1  and

−1 =  +−1

 (Σ−1 ) =  +  (Σ−1  )

Observe the latter column vectors of  have high frequencies (see the next

section). Since the noise vector  has higher frequency components, one can
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drop some of the latter terms in the SVD, that is, use the truncated SVD

() =  ()Σ(
()) with   rank() =  The computed signal isb =  ()(Σ−1 ( ()))

=

X
=1


1


 

=

X
=1

(
1


 ) 

Depending in the choice the truncation, the  may still be small so that

variations in the data can cause large errors. This is more carefully discussed

in Chapter 8 on ill-conditioned matrices. One possible remedy is to replace

1


by

1



2

2 + 
where   0

When  is near 00 then this approximates 1  When  gets large, then this

approximates 00.

Definition 4 Let  be  ×  and choose   0 and    The Tikhonov-

Phillips regularization is

( + )
−1

The truncated Tikhonov-Phillips regularization ise = ((())() + )
−1(())

=

X
=1

(


2 + 
 ) 

Matrix and summation versions of the truncated Tikhonov-Phillips regu-

larization are the same, and this can be established by using the orthonormal

properties in the SVD. The choice of   0 and    can be judgemental, and

this is illustrated in the next section.

For additional information and analysis the reader should consult [13].

6.6 MATLAB Code image1dsvd.m

The matrix  is 100 × 100 and is defined by Setup1dsvd.m. The following
MATLAB code Kmatrix.m uses this and computes the SVD of  The singular

values vary from largest to very very small

1 = 09985 40 = 00944 and 100 = 42267 10
−7

The eigenvectors  and  have more oscillations as  increases. This is illus-

trated in Figure 6.6.1.
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1 Setup1dsvd;

2 [U S V] = svd(K);

3 S = diag(S);

4 S(1)

5 S(40)

6 S(100)

7 figure(3)

8 subplot(1,2,1)

9 plot(V(:,2));

10 hold on

11 plot(V(:,10));

12 subplot(1,2,2)

13 mesh(U(:,10)*S(10)*V(:,10)’);

The matrix and the signal with noise is defined in line 8 by Setup1dsvd.m.

This is illustrated in the upper left graph in Figure 6.6.2. The full SVD of the

matrix is computed in line 9. The truncation  = 40 is used in line 11, and the

user may want to experiment with the truncation number. Three values for 

are used as indicated by the loop starting at line 16. The truncated Tikhonov-

Phillips approximations are computed in the inner loop in lines 18-21. The

graphs of the approximated signal are given by lines 25-26 and are displayed in

the upper right, lower left and lower right graphs in Figure 6.6.2.

1 % This code illustrates noise filters using the SVD.

2 % The 1D data is given by Setup1dsvd.

3 %

4 clear;

5 %

6 % Input data from Setup1dsvd.m

7 %

8 Setup1dsvd

9 [U S V] = svd(K);

10 S = diag(S);

11 k = 40 % truncation of SVD

12 %

13 % Compute SVD filter using variable parameter alpha.

14 %

15 num = 2;

16 for alpha = [0.001 0.034 0.900]

17 newimage = zeros(n,1);

18 for j = 1:k

19 newimage = newimage + ...

20 (S(j)*(U(:,j)’*d(:))/(S(j)*S(j) + alpha))*V(:,j);

21 end

22 %

23 % Graphaical output is given for each alpha.
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Figure 6.6.1: Vectors From SVD of K

24 %

25 subplot(2,2,num)

26 plot(x,f_true,’-’,x,newimage)

27 axis([0 1 -.2 1.6])

28 title([ ’alpha = ’ num2str(alpha)])

29 num = num + 1;

30 end
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Figure 6.6.2: Noise Filter with Truncation k = 40



Chapter 7

Pseudoinverse of 

The pseudoinverse of an ×  matrix is an × matrix † It is important
because † is a minimal 2-norm solution to the general least squares problem.
Moreover, when† is restricted to(), it is a right inverse, that is, (†) = 

when  = e
7.1 Σ†and † = Σ†

As motivation for the definition of the pseudoinverse of an ×  matrix with

rank() = , consider the least squares problem. Let  = 1Σ

1 be the

"small” SVD where the columns of 1 and 1 are orthonormal bases for ()

and ( ), respectively. Theorem 3.2.1 gives the minimal 2-norm least squares

solution based on two projections

b = ()() and  = ( )(b)
Because the bases are orthonormal, the projections are easily computed

()() = 1(

1 ) and ( )(b) = 1(


1 b)

Combine these equations to get

b = ()()

1Σ

1 b = 1(


1 ) and

 
1 b = Σ−1 

1 

The minimal 2-norm solution is

 = ( )(b) = 1(

1 b) = (1Σ−1 

1 )

59
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Definition 1 Let  = Σ  be the SVD of an  ×  matrix with rank()

=  The pseudoinverse is an × matrix

† ≡  Σ† with

Σ† ≡
∙

Σ−1 0×(−)
0(−)× 0(−)×(−)

¸
is an × matrix.

The proofs of the following identities are routine, but they do lead to the

fundamental properties of the general pseudoinverse †

Theorem 7.1.1 Identities with Σ and Σ†
1. ΣΣΣ† = Σ 
2. Σ†ΣΣ = Σ 
3. ΣΣ†Σ = Σ
4. If  has full column rank, rank() =  =  with m , then

Σ =

∙
Σ

0(−)×

¸
 Σ†Σ =  and Σ

Σ = Σ2

5. If  has full row rank, rank() =  =  with l , then

Σ =
£
Σ 0×(−)

¤
 ΣΣ† =  and ΣΣ = Σ2

6. (Σ†)Σ† =
∙

Σ−2 0×(−)
0(−)× 0(−)×(−)

¸
is ×

7. ΣΣ =

∙
Σ2 0×(−)

0(−)× 0(−)×(−)

¸
is × 

Proof. Show the third identity is true.

Σ†Σ =

∙
Σ−1 0×(−)

0(−)× 0(−)×(−)

¸ ∙
Σ 0×(−)

0(−)× 0(−)×(−)

¸
=

∙
 0×(−)

0(−)× 0(−)×(−)

¸
is × 

Σ(Σ†Σ) =

∙
Σ 0×(−)

0(−)× 0(−)×(−)

¸ ∙
 0×(−)

0(−)× 0(−)×(−)

¸
=

∙
Σ 0×(−)

0(−)× 0(−)×(−)

¸
= Σ

Use the above identities and the orthonormal properties to establish the

following theorem.

Theorem 7.1.2 Let  be ×  matrix with rank() =  Then

1. ()† =  

2. †( ) =  

3. † = 

4. (†) =  when  ∈ ()
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5. If  has full column rank, then  is nonsingular and

† = ()−1 

6. If  has full row rank, then  is nonsingular and

† =  ( )−1

Proof. The first and second items follow from the first and second identities

in Theorem 7.1.1 and the orthonormal properties. In order to show the third

item, use  = Σ  and † =  Σ† 

† = (Σ  )
¡
 Σ†

¢
(Σ  )

= ΣΣ
†Σ 

= (ΣΣ†Σ) 

= Σ  by identity 3 in Theorem 7.1.1

= 

The proof of the fourth part follows from † =   ∈ () means there is

an b ∈ R such that b = 

(†) = († (b))
= (†)b
= b
= 

Example 1 Return to Examples 7,8 in Sections 1.3, 1.4 and Example 2 in

Section 3.2.

 =

⎡⎣ 1 2

2 4

3 6

⎤⎦  Compute  = Σ  , † =  Σ† and use † to solve

the least squares problem  =  =
£
10 5 2

¤


First, compute  = Σ  by finding the eigenvalues of

 = 14

∙
1 2

2 4

¸


det(14

∙
1−  2

2 4− 

¸
) = 0 implies 1 = 70 and 0 = 0

This gives 1 =
√
70, 2 = 0 and

1 =

∙
1

2

¸

√
5 and 1 =

1

1
=

⎡⎣ 1

2

3

⎤⎦ √14
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The "small" SVD is  = 11

1  In order to find the "full" SVD, we need to

extend the bases to () and ( ) 2 = 03×1 and 2 = 02×1 gives

2 =

∙ −2
1

¸

√
5 and 2 =

⎡⎣ −51
1

⎤⎦ √27
The "full" SVD is

 =
£
1 2

¤ ∙ √70 0

0 0

¸ ∙
1
2

¸


Second, compute † and †

† =
£
1 2

¤ ∙ 1√70 0

0 0

¸ ∙
1
2

¸
and

† =

∙
1
√
5 −2√5

2
√
5 1

√
5

¸ ∙
1
√
70 0

0 0

¸ ∙ £
1 2 3

¤

√
14£ −5 1 1

¤

√
27

¸⎡⎣ 10

5

2

⎤⎦
=

∙
1
√
5

2
√
5

¸
((1
√
70)

£
1 2 3

¤

√
14

⎡⎣ 10

5

2

⎤⎦)
=

∙
1335

2635

¸


Third, relate this to the general least squares solution

 =

∙
2614

0

¸
+ 

∙
2

−1
¸


Let () =  = (2 + 2614)2 + 2 This has a minimum at  = −2635 so
that

 =

∙
2614

0

¸
+ (−2635)

∙
2

−1
¸

=

∙
1335

2635

¸
= †

7.2 † and Least Squares

Example 1 generalizes to any matrix. † can be written in summation form

† =
X

=1

(
1


)  where rank() = 

Since 1 ≤  ≤ , this means † ∈ ( )
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Theorem 7.2.1 Let  be ×  matrix with rank() = 

1. + = † is a solution of the normal equations.
2. Moreover, it is a minimal solution of the normal equations, that is,

(+) (+) ≤ min
∈()

(+ + ) (+ + )

Proof. † is a solution of the normal equations follows from † = 

in the previous theorem.

(†) = (†) = 

The proof that † is a minimal least squares solution uses + = † =
 (Σ†) ∈ ( ) If  ∈ () then + +  is also a solution of the normal

equations. By Theorem 3.2.1 () = ( )⊥ and note

(+ + ) (+ + ) = (+)+ + 2+ + 

= (+)+ + 0 + 

≥ (+)+ for all  ∈ ()

Example 2 Return to Example 3 in Sections 5.2 and 5.3

 =

⎡⎢⎢⎣
1 1 2

1 2 3

1 3 4

1 4 5

⎤⎥⎥⎦ has rank() = 2 The first two columns of  are a basis

for () and the vector
£ −1 −1 1

¤
is a basis for () The general

least squares solution of  =  =
£
1 2 5 4

¤
is

 =

⎡⎣ 0

12

0

⎤⎦+ 

⎡⎣ −1−1
1

⎤⎦ where



⎡⎣ 0

12

0

⎤⎦ = ()() =

⎡⎢⎢⎣
12

24

36

48

⎤⎥⎥⎦ 
()() = 11 + 22 where 1 and 2 are the first and second columns of

 The 1 = 00 and 2 = 12 are found by solving


1 (− 11 − 22) = 0 and


2 (− 11 − 22) = 0

The smallest  is given by  = 04 and  =
£ −4 8 4

¤


This agrees with the following MATLAB computations.
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A =

1 1 2

1 2 3

1 3 4

1 4 5

d = [ 1 2 5 4]’

1

2

5

4

[U S V] = svd(A);

>> pinv(A)

=

0.7667 0.3667 -0.0333 -0.4333

-0.5333 -0.2333 0.0667 0.3667

0.2333 0.1333 0.0333 -0.0667

>> V*pinv(S)*U’

=

0.7667 0.3667 -0.0333 -0.4333

-0.5333 -0.2333 0.0667 0.3667

0.2333 0.1333 0.0333 -0.0667

>> pinv(A)*d

=

-0.4000

0.8000

0.4000

Example 3 This example exposes some possible difficulties with the pseudoin-

verse. Let  be a small positive number and consider the 3× 2 matrix

 =

⎡⎣ 1 0

0 

1 0

⎤⎦ 
Since  has full column rank,

† = ()−1 =

∙
12 0 12

0 1 0

¸


First, note  converges as → 0 but † does not. Second, a small variation in
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the right side of  =  can give a large variation in the least squares solution

† =
∙
12 0 12

0 1 0

¸⎡⎣ 1
2
3

⎤⎦ = ∙ (1 + 3)2

2

¸


If  = 10−6 and 2 varies by 10 the second component varies by 106





Chapter 8

Ill-conditioned Least

Squares

Ill-conditioned matrices have the unpleasant property that small perturbations

in the × matrix or right side can give large variations to the solution to the

unperturbed system. This will be generalized to certain  ×  matrices and

the least squares problem. An interesting application is to hazard identification

such as a pollutant in a river with point sources along the river. Can one

find the location and intensities of the point sources from observations at other

locations along the river? In this application we restrict the location and find

the intensities. The location of the observations can generate ill-conditioned

least squares problems.

8.1 Condition Number

Consider a nonsingular ×  matrix and use any norm. The classical analysis

with  =  and (+∆) = +∆ estimates ∆ relative to 

∆ = ∆ and ∆ = −1∆

kk ≤ kk kk or 1

kk ≤ kk
1

kk 

k∆k ≤
°°−1°° k∆k 

Combine these to get

k∆k
kk ≤ kk

°°−1°° k∆kkk 

The classical condition number is kk
°°−1°°, but it is dependent on the choice

of the norm. If the 2-norm is used, then by Theorem 5.4.1 kk
°°−1°° = 1

For general ×  use this ratio as condition number.

67
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Definition 1 Let  be  ×  matrix with rank() =  with 1 ≥ 2 ≥ · · · ≥
  0

cond() ≡ 1

Example 1  =

⎡⎣ 1 12 13

12 13 14

13 14 15

⎤⎦ or, more generally,  = () =
h

1
1++

i
where   = 0  − 1 The condition numbers increases rapidly with n:

cond((3)) = 5240568

cond((4)) = 15514 104 and

cond((5)) = 47661 105

If the right sides of  =  are close, then the solutions may not be so close.

For example,

(4)

⎡⎢⎢⎣
1

1

1

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
20837

12833

09500

07595

⎤⎥⎥⎦ and

(4)

⎡⎢⎢⎣
−8
114

−288
196

⎤⎥⎥⎦ =

⎡⎢⎢⎣
20000

12000

09000

08000

⎤⎥⎥⎦ 
This is the Hilbert matrix, and it evolves from approximation of general function

by a polynomial. Choose the coefficients of the polynomial to minimize the mean

square integral of the difference.

 () ≡
Z 1

0

(()−
−1X
=0


)2

0 =



= 2

Z 1

0

(()−
−1X
=0


)2−1

Z 1

0

() =

−1X
=0



Z 1

0

 =

−1X
=0


1

1 +  + 


Example 2 Let  =  be the blurring matrix in the noise filter application

in Sections 6.5 and 6.6. In the calculations in Section 6.6 the  matrix is

100× 100 with 1 = 09985, 100 = 42267 10
−7 and cond() = 23620 106

Theorem 8.1.1 Let  be an ×  matrix with rank() =  with 1 ≥ 2 ≥
· · · ≥   0 

† ≡  Σ† is almost in the SVD form and

kk2 = 1 and
°°†°°

2
= 1
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Proof. The eigenvectors in † need to be reordered so that the singular values
in Σ† have decreasing order. The proof of kk2 = 1 was given in Theorem

5.4.1. The proof of
°°†°°

2
= 1 is similar. Let  ∈ R be a unit vector and

(†)† =  ( Σ† ) Σ†

= (Σ†)  Σ†

= (Σ†)Σ†

Use identity 6 in Theorem 7.1.1 to note the largest diagonal component in

(Σ†)Σ† is 12 Since the columns of  are an orthonormal basis,  = 

with  =  and   =  = 1 Thus

(†)† ≤ (12) and
°°†°°

2
≤ 1

In order to obtain the inequality in the other direction, choose  =  to be

column  in  Then  =  and (
†)† = 12

Consider + = † where there is a variation in the right side

(+∆)+ = †(+∆)

= †+†∆

= + +†∆

∆(+) ≡ (+∆)+ − + = †∆

Theorem 8.1.2 If  is an ×  matrix with rank() =  and ∆ ∈ (),

then for + = †

1

cond()

k∆k2
kk2

≤ k∆(
+)k2

k+k2
≤ cond()k∆k2kk2



Proof. Apply the 2-norm to ∆(+) = †∆°°∆(+)°°
2
≤
°°†°°

2
k∆k2 ≤ (1) k∆k2 

Use  ∈ () and Theorem 7.1.2 to write + = (†) =  Apply the

2-norm

kk2 ≤ kk2
°°+°°

2
≤ 1

°°+°°
2
or

1

k+k2
≤ 1

kk2


Combine these to get the desired upper inequality.

Apply the 2-norm to + = †°°+°°
2
≤

°°†°°
2
kk2 ≤ (1) kk2 or

 kk2 ≤ 1
°°+°°

2
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Use ∆ ∈ () and Theorem 7.1.2 to write ∆(+) = (†∆) = ∆ Apply
the 2-norm

k∆k2 ≤ kk2
°°∆(+)°°

2
≤ 1

°°∆(+)°°
2
or

(11) k∆k2 ≤
°°∆(+)°°

2


These two inequalities give the lower inequality.

The above result for the least squares solution does not include variations

in the least squares solution because of the possible changes in the matrix. The

following result can be established for nonsingular  ×  matrices. Consider

 =  and (+∆)(+∆) = +∆ and assume°°−1°°
2
k∆k2  1

Then +∆ has an inverse and one can eventually show

k∆k2
kk2

≤ ()

1− k−1k2 k∆k2
(
k∆k2
kk2

+
k∆k2
kk2

)

A possible extension of this to the general least squares problem is interesting!

8.2 Application to Hazard Identification

Consider a governing differential equation for the hazard, and discretize it to

obtain a linear system

 = 

The coefficient matrix  is derived using finite differences with upwind finite

differences on the velocity term. The coefficient matrix will be ×  and the

sites or nodes will be partitioned into three ordered sets, whose order represents

a reordering of the nodes,

 observe sites

 source sites and

 remaining sites.

The hazard identification problem is given data  at  find ()

such that

 =  and () = 

In general, the reordered matrix has the following 2×2 block structure with
 = [ ]

 =

∙
 

 

¸
where

 = ( )

 = ( )

 = ( ) and

 = ( )



8.3. MATLAB CODE HAZIDSVD1.M 71

Assume the following are true:

(i).  and  have inverses.

(ii). #() = , #() =    and #() =  so that  =

 +  + 

(iii).  =
£
0 1

¤
and the only nonzero terms in 1 are at the nodes

in  that is,

 ≡ £0 1()
 0

¤


Multiply the above equation by a block elementary matrix∙
 0

−−1 −

¸ ∙
 

 

¸ ∙
0
1

¸
=

∙
 0

−−1 −

¸ ∙
0

1

¸
∙

 

0 b
¸ ∙

0
1

¸
=

∙
0

1

¸
and b ≡ − −1 (8.2.1)

Solve for 1 and then 0 = −−1(b)−11 Define
1 ≡ [1() 0] and  ≡ −−1(b)−1

The computed approximations of the observed  is in 0 and the source data

is in  = 1() This gives a least squares problem for 

(: ) = 

Let 1() =  and use the notation () = [0  0] 

Since  is  ×   is  × (− ) and b is (− )× (− ) the matrix  is

×(−) and the least squares matrix (: ) is × where    The least

squares problem will have a unique solution if the columns of (: ) are

linearly independent ((: ) = 0 implies  = 0). The condition number

will depend on the parameters in the differential equation as well as the position

of the observation sites relative to the source sites. Here both the least squares

matrix and the right side have variations. If there are insufficient source sites,

   then the pseudoinverse of (: ) can be used to find the minimal

2-norm sources.

A more general discussion of the topic can be found in [15].

8.3 MATLAB Code hazidsvd1.m

Lines 1-33 define the 100×100 matrix associated with the differential equation.
Line 34 locates the three source sites, and lines 35-38 give three possible ob-

servation sites and intensities. Lines 39-53 computes the new source numbers,

which are caused by the reordering. The reordered matrix is computed in line

57-61. The least squares matrix is computed in lines 62-64. The loop in lines

71-76 solves the least square problem 100 times with variable noise in the data.

Lines 82 and 83 display the mean and standard deviation of the computed

intensities at the source sites.
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1 clear; clf(figure(1));

2 % hold on

3 % This code illustrates the linear least squares problem to

4 % identify the sources given observations. This is from

5 % -(K u_x)_x + vel u_x + ru = point sources.

6 % The intensities at the point source sites are to be found

7 % from data at observation sites.

8 % The 1D steady state problem with fixed locations and

9 % unknown intensities is solved.

10 %

11 % Input data and system matrix

12 %

13 n = 100; L = 2.0; dx = L/n;

14 K = 0.005; % diffusion

15 vel = 0.10; % flow rate

16 r = 0.0200; % decay rate

17 noise = 0.10 % percent noise level

18 A = zeros(n);

19 for i = 1:n

20 if i == 1

21 A(i,i) = K*2/dx^2 + vel/dx + r;

22 A(i,i+1) = -K/dx^2;

23 end

24 if i>1 && i<n

25 A(i,i) = K*2/dx^2 + vel/dx + r;

26 A(i,i+1) = -K/dx^2;

27 A(i,i-1) = -K/dx^2 - vel/dx;

28 end

29 if i == n

30 A(i,i) = K*2/dx^2 + 2*vel/dx + r;

31 A(i,i-1) = -K*2/dx^2 - 2*vel/dx;

32 end

33 end

34 ssites = [20 35 80 ]; % source sites

35 osites = [10 30 60 90]; % observation sites

36 % osites = [10 30 60 70];

37 % osites = [10 30 ];

38 p = [1 5 4] % intensities of souces

39 [ms ns] = size(ssites)

40 [mo no] = size(osites)

41 % Find shifted ssites

42 newssites = ssites;

43 for js = 1:ns

44 for jo = 1:no

45 if osites(jo) < ssites(js)
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46 newssites(js) = newssites(js) - 1;

47 end

48 end

49 end

50 newssites

51 other = setdiff(1:n, osites);

52 set1 = union(osites,ssites);

53 rsites = setdiff(1:n, set1);

54 %

55 % Computation of reordered matrix and least squares matrix.

56 %

57 a = A(osites,osites);

58 b = A(other,other);

59 e = A(osites,other);

60 f = A(other,osites);

61 AA = [ a e; f b];

62 bhat = b - f*inv(a)*e;

63 C = -inv(a)*e*inv(bhat);

64 CLS = C(:,newssites);

65 d = zeros(n,1);

66 [U S V] = svd(CLS)

67 % Dirac delta appoximations

68 d(ssites)= p/dx;

69 u = A\d;

70 % Simulations with noise 100 executions

71 for kk = 1:100

72 data = u(osites);

73 data = data + data*(noise).*(rand(jo,1) - .5);

74 z = pinv(CLS)*data;

75 zz(1:ns,kk) = z;

76 end

77 display(’U^T*data = ’)

78 U’*data

79 %

80 % Numeric and graphical output

81 %

82 meanzz = mean(zz’)

83 stdzz = std(zz’)

84 display(’u at ssites = ’)

85 u(ssites)

86 res_error = data - CLS*z

87 rank_num = rank(CLS)

88 cond_num = cond(CLS)

89 x = (1:n)*dx;

90 plot(u)
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91 dd = zeros(n,1);

92 dd(ssites) = z;

93 uu = A\dd;

94 hold on

95 plot(uu,’k:’)

96 plot(osites,4,’*’)

In the following numerical experiments there are four or two observation

sites and three source sites. So the least square matrix  will be either 4×3
or 2× 3 The pseudoinverse times  can be written as

†  = 1(
1 

1
) + 2(

2 

2
) + 3(

3 

3
)

In the second numerical experiment the fourth observation site is poorly placed.

This results in small third singular value, and the third term in the above being

prone to computation errors.

The first numerical experiment uses observation sites 10, 30, 60 and 90 and

source sites 20, 35 and 80. The graphical output is given in Figure 8.3.1 and

some of numerical output is given below. The mean computed intensities are

close to the exact values of 50, 250 and 200. Moreover, the standard deviations

is small.

>> hazidsvd1

noise =

0.1000

ssites =

20 35 80

osites =

10 30 60 90

p =

1 5 4

newssites =

19 33 77

U =

-0.0120 0.0203 0.0339 -0.9991

-0.4116 0.5815 0.7006 0.0405

-0.5921 0.4142 -0.6912 -0.0079

-0.6927 -0.6999 0.1739 0.0000

S =

0.3830 0 0

0 0.1520 0

0 0 0.0880

0 0 0

V =

-0.7272 0.4910 0.4797
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Figure 8.3.1: Hazard Id with osites = [10 30 60 90]

-0.5963 -0.1056 -0.7958

-0.3401 -0.8647 0.3695

U^T*data =

-96.8285

-28.6826

-6.7047

0.0194

meanzz =

49.6993 250.0798 201.6292

stdzz =

3.8101 10.8717 14.8688

u at ssites =

10.0538

58.0373

87.6532

rank_num =

3

cond_num =

4.3520

The second numerical experiment uses observation sites 10, 30, 60 and 70

and source sites 20, 35 and 80. The graphical output is given in Figure 8.3.2 and

some of numerical output is given below. The mean computed intensities are
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close to the exact values of 50, 250 and 200. However, the standard deviation

is larger, and this is more pronounced in the third intensity where the third

singular value is small. The condition number for this least squares matrix is

larger, and the rank is still equal to 3.

>> hazidsvd1

noise =

0.1000

ssites =

20 35 80

osites =

10 30 60 70

p =

1 5 4

newssites =

19 33 76

U =

-0.0131 0.0388 0.0059 -0.9991

-0.4497 0.8922 0.0005 0.0405

-0.6438 -0.3237 -0.6933 -0.0082

-0.6190 -0.3124 0.7206 0.0003

S =

0.3741 0 0

0 0.1012 0

0 0 0.0045

0 0 0

V =

-0.7775 0.6289 0.0044

-0.6288 -0.7772 -0.0231

-0.0111 -0.0207 0.9997

U^T*data =

-73.1552

-16.6344

2.7738

0.0029

meanzz =

49.6001 249.5465 214.6239

stdzz =

4.1013 12.0458 380.1449

u at ssites =

10.0538

58.0373

87.6532

rank_num =

3

cond_num =
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Figure 8.3.2: Hazard Id with osites = [10 30 60 70]

82.5861

The third numerical experiment uses observation sites 10 and 30 and source

sites 20, 35 and 80. The graphical output is given in Figure 8.3.3 and some of

numerical output is given below. The mean computed intensities are close to the

exact values of 50, 250 but not 200. The condition number of the least square

matrix has increased and the rank is 2 The general least squares solution is

† +  3 where  3 = 02×1

The minmal 2-norm least squares solution follows from

 + 3 =
£
1 2 3

¤
+ 

£
0 0 1

¤


Then  = −3 and  + 3 =
£
1 2 0

¤


>>hazidsvd1

noise =

0.1000

ssites =

20 35 80

osites =

10 30

p =

1 5 4
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newssites =

19 33 78

U =

-0.0324 0.9995

-0.9995 -0.0324

S =

0.1911 0 0

0 0.0011 0

V =

-0.9825 0.1863 0.0000

-0.1863 -0.9825 -0.0000

-0.0000 -0.0000 1.0000

U^T*data =

-17.6769

-0.2616

meanzz =

49.6716 251.3730 0.0001

stdzz =

1.5527 17.3989 0.0000

u at ssites =

10.0538

58.0373

87.6532

rank_num =

2

cond_num =

168.4529
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Figure 8.3.3: Hazard Id with osites = [10 30]





Chapter 9

Nonlinear LS and Epidemic

Models

The Levenberg-Marquardt algorithm will be used to approximate the solutions

to nonlinear least squares problems. Application to parameter identification of

differential equations will be illustrated. In particular, the elementary models

of epidemics will be discussed. This includes SIR and SIRD (death is allowed).

The US data for the COVID-19 virus will be used in a variation of the SIRD

to estimate the parameters. Two limitations of this model are non homoge-

neous population and time dependent parameters. Here the matrices are ill-

conditioned, and the effects of uncertain data are noted. This model does seem

to give a limited prediction about the aggregated US COVID-19 infection and

with select time intervals.

9.1 Levenberg-Marquardt Algorithm

The objective is to identify  parameters from  measured data at time or

space. The model is usually an ODE or a PDE.

 ∈ R measured data vector with   

 ∈ R is the parameter vector,
( ) real solution from a DE with given parameters and

 or  ≡  − ( )

Nonlinear Least Squares Problem.

Find  so that the residual in a minimum

min
P
=1

( − ( ))
2

Use a Linear Approximation.

( ) ' (0 ) +  0(0 )(− 0) and

 0(0 ) ≡ [ (0 )] is an ×  matrix of partial derivatives.

81
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min
P
=1

( − ((0 ) +  0(0 )(− 0)))2

= min
P
=1

(( − (0 ))−  0(0 )(− 0))2

This is a least squares problem ∆ =  where

 = [ − (0 )] and  ≡ [ (0 )]
Use Theorem 1.1.1 to conclude ∆ is the solution of the normal equations.

Gauss-Newton Algorithm. Let  ≡ [ ( )]
+1 =  +∆ where ∆ =  ( − ( ))

Notation. Let  () ≡  − ()  0() = 0 −  0() and so the least squares
problem is

 0() 0()∆ = − 0() ( ()). If  0() has full column rank, then

+1 =  − ( 0() 0())−1 0() ( ())
This method does not always converge to the solution of nonlinear least

squares problem. The following example has  = 2 and  = 1 with  = 02×1

Example 1 Let  : R1 → R2

() =

∙
+ 1

2 + − 1
¸


 =  − ()

min   = min(
1

2
(+ 1)2 +

1

2
(2 + (− 1))2)

Define () =   and note 0(0) = 0 and 00(0) = 0 for   1 Thus  = 0 is
a solution. However, the Gauss-Newton method fails for   −1 as is illustrated
by the following calculation which oscillates between +1 and −1.

clear

a = -1.1; p = .1;

for k = 1:100

F = -[p+1; a*p^2+p-1];

Fp = -[1; 2*a*p+1];

newp = p - Fp’*F/(Fp’*Fp);

p = newp;

pp(k) = p;

end

plot(pp)

The Levenberg-Marquardt algorithm has two enhancements: the  and 

real parameters. These can be adjusted within the interation so to accelerate

or to minimize the residual. The parameters were introduced by K. Levenberg

(1944) and by D. Marquardt (1963); see [9, section 8.5]. Let  ∈ R be the data
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and let  : R −→ R be a function of the unknown parameters  Approximate
the solution of

min

( − ()) ( − ())

Levenberg-Marquardt Algorithm.   () =  − ()

0 ∈ R initial estimate for the parameters
for  = 1

choose  and 
compute  () and the ×  matrix  0()
solve the least squares problem

( 0() 0() + )∆ =  0() ()

+1 =  − ∆

test for convergence

end

Example 2 Return to Example 2 in Section 1.1 and 1.2. The model for price

prediction based on six previous observations was a discrete model, which could

be viewed as an approximation of a first order differential equation

0 = (min − ) and (0) = 2080

Here the parameters are  and min The solution of the differential equation is

() = (2080) − ) () + 

= (2080) − 2) (1) + 2

Here there are six measurements for () to approximate the two parame-

ters. The matrix in the Levenberg-Marquardt algorithm is 6 × 2 The com-
puter code levmarqprice.m is in the next section. One can use the results in

price_expdata.m as a starting point for the code in levmarqprice.m.

Example 3 Consider over damped mass spring system where damping, spring

constant, initial position and initial velocity are four unknown parameters. The

model has the form


00
+ 

0
+  = 0

If the position is measured at  time steps, find these parameters.

( ) = 1 exp(2) + 3 exp(4)

The interested reader should download levmarqheat.m. Here there are eight

measurements for () to approximate the four parameters. The matrix in the

Levenberg-Marquardt algorithm is 8× 4



84 CHAPTER 9. NONLINEAR LS AND EPIDEMIC MODELS

9.2 MATLAB Code levmarqprice.m

Line 18 contains the initial estimate for the parameters. Here one could have

used the results of the finite difference model in price_expdata.m. Line 20

contains constant values for  and  In more sophisticated implementations,

these are adjusted within the algorithm’s loop in lines 21-32. The algorithm

converged in only 11 iterations, and this is in contrast to levmarqheat.m. The

outputs for the residual and price at time equal to 8 are 402620 and 18126

from price_expdata.m, and 315225 and 18133 from levmarqprice.m.

1 % This code illustrates the Levenberg-Marquardt algorithm

2 % for curve fitting to price data (or Newton cooling).

3 % Consider the first order ODE: u’ = c(pmin - u) and u(0) = 2080.

4 % Suppose c and pmin are unknown, and measured values for u(t_i)

5 % are known where i = 1:m. Approximate the two unknown

6 % parameters from the measured data.

7 %

8 % f_i(p1,p2,t) = (2080) - pmin) exp(ct) + pmin

9 % =(2080 - p(2)) exp(p(1)t) + P(2)

10 % F(p1,p2,t_i) = udata(t_i) - f_i(p1,p2,t)

11 % FP is an mx2 matrix with components f_i,_p(1) and f_i,_p(2).

12 %

13 clear; clf;

14 % Define "data"

15 tdata = 0:1:5; tdata = tdata’;

16 udata = [ 2080 2000 1950 1910 1875 1855]’;

17 % Initial guess for parameters

18 p = [ -1 1500]’;

19 % Begin Levenberg-Marquardt

20 lam = 0.01; alpha = 1.0;

21 for lm = 1:20

22 F = udata -((2080 - p(2))*exp(p(1)*tdata) + p(2));

23 FP = -[(2080 - p(2))*exp(p(1)*tdata).*tdata...

24 -exp(p(1)*tdata)+1];

25 newp = p - alpha*(FP’*FP + lam*eye(2))\(FP’*F);

26 error = norm(newp - p);

27 p = newp;

28 if error < 0.00001

29 break

30 end

31 % pause

32 end

33 lm

34 error

35 % Compare computed and initial parameters

36 plot(tdata,udata,’*’)
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37 hold on

38 time = [0:1:15];

39 newu = (2080 - p(2))*exp(p(1)*time) + p(2);

40 plot(time,newu, ’r’)

41 title(’Predicted Price Values by the ...

Levenberg-Marquardt Algorithm’)

42 xlabel(’Time’)

43 ylabel(’Price’)

44 pmin = p(2)

45 c = p(1)

46 display(’Predicted price at 8 = ’)

47 newu(9)

48 r = udata - newu(1:6)’

49 rTr = r’*r

50 cond(FP)

51 S = svd(FP)

>> levmarqprice

lm =

11

error =

3.5374e-06

pmin =

1.7942e+03

c =

-0.3095

Predicted price at 8 =

ans =

1.8183e+03

r =

0

-3.9384

1.8776

2.8369

-2.1060

-0.0493

rTr =

31.5225

ans =

2.3261e+03

S =

675.1095

0.2902
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Figure 9.2.1: Levenberg-Marquardt Prediction of Price

9.3 SIRD Epidemic Models

The SIRD model has four differential equations for four unknown functions of

time. The functions are () = susceptible, () = infected, () = recovered

and () = death populations. If there are no deaths, this is called the SIR

model. This was introduced by W. Kernmack and A. McKendrick (1927); for

a more recent discussion see [11, section 1.2].

There are four primary components that govern the growth of an infected

population: probability of transmission, the degree of susceptibility, number of

contacts with an infected, and duration of contacts. These components deter-

mine the size of the three parameters, ,  and , in the following system of

differential equations.

SIRD Model.




= −




=  −  − 




=  and




= 

The parameter  is often called the "effective contact" because it has the

primary components of probability, susceptibility and contacts. The parameters
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 and  are the removal rates from the infected to either the recovered or death

populations. Their reciprocals determine the durations of the infected. Here

we assume the four primary components are fixed, and the three parameters

are constants.

The populations move from  to  and then to either  or .  is a

decreasing function of time, and  and  are increasing functions of time. The

total population must be constant because the sum of the derivatives is zero.

The equation of the infected may be written as




= ( −  − ) and  is positive.

So, if the second factor is positive (negative), then  will increase (decrease).

This may also be written as

()

 + 
 1 (or  1) for  to increase (or decrease).

Initially, the infection will increase only if (0)  0 and (0) −  −   0

The infected will be a maximum at time max where (max) −  −  = 0

which follows from




(max) = 0 and

2

2
(max)  0

An alternate analysis is to determine if a single infected will infect more

than one susceptible. This can be broken into product of three factors:

(new infections per contact)

(contacts per time) and

(duration time per infected).

In the SIR model where  = 0 this is (1)  1

Because this model is nonlinear, one must approximate the solution using

numerical methods. In the next section this is done using Runge-Kutta vari-

able step size method. The first calculation illustrates the effect of decreasing

the effective contact parameter, see Figure 9.3.1. Note, the maximum of the

infection decreases and moves to the right. The other calculations in the next

section determine the three parameters resulting from additional observations.

9.4 MATLAB Code sird_parid.m

The primary objective of this code is to illustrate how the Levenberg-Marquardt

algorithm can be used to approximate the three parameters in the SIRD model.

This is done in lines 117-156. For each of the four functions there are 12 data

points. So, the objective function is a 48× 1 column vector and the derivative
matrix is 48× 3 The columns in the derivative matrix are partial derivatives,
and they are approximated by finite differences (can be tricky).
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Figure 9.3.1: Variable Effective Contact Parameter

Lines 37-68 solves the SIRD model for given parameters, and this was used

to generate Figure 9.3.1. Lines 70-92 define test data (would be measured values

of the four functions). Lines 98-116 give a first estimate of three parameters

using the first order finite difference approximation of the SIRD system. This

is gives a least squares problem, which is solved in line 111. These are used as

an initial estimate for the more accurate Levenberg-Marquardt algorithm.

The implementation requires many evaluations of the objective function and

the derivative matrix. These are done using the higher order ode45 implemen-

tation of the variable step size Runge-Kutta method. See lines 117, 131,136,

141 and 149.

The output is given in Figure 9.4.1 where the data points are indicated by

the isolated points. The three computed parameters are listed at the top of the

figure. The four curves were computed using these parameters. The reader will

find it interesting to experiment with different numbers of data points.

1 % This code uses least squares to identify three parameters

2 % in the SIRD model:

3 % S_t = -a SI,

4 % I_t = a SI - (br + bd) I,

5 % R_t = br I and

6 % D_t = bd I where

7 % a = "contagious" (effective contact) parameter,

8 % br = "recovery" parameter and

9 % bd = "death" parameter.

10 % The data is given in the vectors Sd, Id Rd and Dd,
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11 % and they are adjusted by a random variable.

12 % The data is used in the finite difference approximation:

13 % (S_i+1 - S_i-1)/(2 dt) = -a S_i I_i,

14 % (I_i+1 - I_i-1)/(2 dt) = a S_i I_i - (br + bd) I_i,

15 % (R_i+1 - R_i-1)/(2 dt) = br I_i an

16 % (D_i+1 - D_i-1)/(2 dt) = bd I_i.

17 % Least squares is used to compute the coefficients.

18 % The variable data points can be used.

19 %

20 % function [t y] = sirdid

21 % global olda oldbr oldbd so io ro do t0 y0 tend

22 % y0 = [so io ro do];

23 % to = 0;

24 % tf = 60;

25 % opts = odeset(’RelTol’,1e-8,’AbsTol’,1e-8);

26 % [t y] = ode45(’ypsirdid’,[to:1:tf],y0,opts);

27 %

28 % function ypsirdid = ypsirdid(t,y)

29 % global olda oldbr oldbd so io ro do t0 y0 tend

30 % ypsirdid(1) = -olda*y(1)*y(2);

31 % ypsirdid(2) = olda*y(1)*y(2) - (oldbr + oldbd)*y(2);

32 % ypsirdid(3) = oldbr*y(2);

33 % ypsirdid(4) = oldbr*y(2);

34 % ypsirdid = [ypsirdid(1) ypsirdid(2)...

35 % ypsirdid(3) ypsirdid(4)]’;

36 %

37 clear; clf(figure(1)); clf(figure(2));

38 global olda oldbr oldbd so io ro do t0 y0 tend

39 figure(1)

40 %

41 olda = 0.01; oldbr = 0.100; oldbd = 0.010;

42 io = 1;

43 ro = 0;

44 do = 0;

45 so = 100 - io - ro - do;

46 t0 = 0; tend = 60;

47 [t y] = sirdid;

48 subplot(2,1,1)

49 plot(t,y(:,1),’b’, t,y(:,2),’m’, t,y(:,3),’r’, t,y(:,4),’k’)

50 title([’olda = ’ ,num2str(olda),’ oldbr = ’ ,num2str(oldbr),...

51 ’ oldbd = ’ ,num2str(oldbd)]);

52 ylabel(’population percentages’)

53 xlabel(’time’)

54 legend(’susceptible’, ’infected’, ’recovered’, ’dead’);

55 grid on
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56 %

57 % Decrease "effective contact"

58 %

59 olda = 0.005; oldbr = 0.100; oldbd = 0.010;

60 [t y] = sirdid;

61 subplot(2,1,2)

62 plot(t,y(:,1),’b’, t,y(:,2),’m’, t,y(:,3),’r’, t,y(:,4),’k’)

63 title([’olda = ’ ,num2str(olda),’ oldbr = ’ ,num2str(oldbr),...

64 ’ oldbd = ’ ,num2str(oldbd)]);

65 ylabel(’population percentages’)

66 xlabel(’time’)

67 legend(’susceptible’, ’infected’, ’recovered’, ’dead’);

68 grid on

69 %

70 % Test Data

71 %

72 nd = 12;

73 td = 2:2:(2*nd);

74 %td = 1:nd;

75 Id = [1.00 2.56 6.37 14.68 29.20 46.35 58.19 61.64 ...

76 59.35 54.50 48.88 43.32 38.15];

77 Rd = [0.00 0.22 0.77 2.09 4.93 9.93 16.92 24.91 32.94 ...

78 40.07 47.29 53.37 58.75];

79 Dd = [0.000 0.008 0.031 0.083 0.197 0.396 0.675 0.994 1.315 ...

80 1.615 1.888 2.131 2.345];

81 Sd = 100 - Id - Rd - Dd;

82 rvec = rand(1,nd);

83 Id(1:nd) = Id(1:nd) + Id(1:nd).*(2*rvec - 1)/100;

84 rvec = rand(1,nd);

85 Rd(1:nd) = Rd(1:nd) + Rd(1:nd).*(2*rvec - 1)/100;

86 rvec = rand(1,nd);

87 Dd(1:nd) = Dd(1:nd) + Dd(1:nd).*(1*rvec )/50;

88 Sd = 100 - Id - Rd - Dd;

89 io = Id(1);

90 ro = Rd(1);

91 do = Dd(1);

92 so = 100 - io - ro - do;

93 %

94 % Parameter ID From First Order Finite Difference

95 %

96 for i = 2:1:nd-1

97 ii = (i-1)*4;

98 d(ii) = (Sd(i+1) - Sd(i-1))/(td(i+1) - td(i-1));

99 d(ii+1) = (Id(i+1) - Id(i-1))/(td(i+1) - td(i-1));

100 d(ii+2) = (Rd(i+1) - Rd(i-1))/(td(i+1) - td(i-1));
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101 d(ii+3) = (Dd(i+1) - Dd(i-1))/(td(i+1) - td(i-1));

102 A(ii,1) = -Sd(i)*Id(i); A(ii,2) = 0; A(ii,3) = 0;

103 A(ii+1,1)= Sd(i)*Id(i); A(ii+1,2) = -Id(i); ...

104 A(ii+1,3) = -Id(i);

105 A(ii+2,1)= 0.0; A(ii+2,2) = Id(i); A(ii+2,3) = 0;

106 A(ii+3,1)= 0.0; A(ii+3,2) = 0; A(ii+3,3) = Id(i);

107 end

108 %

109 meas = nd - 2;

110 m = 4*meas + 1;

111 x = A(2:m,:)\d(2:m)’; % solves the least squares

112 olda = x(1);

113 oldbr = x(2);

114 oldbd = x(3);

115 display(’Parameters from finite difference’)

116 [olda oldbr oldbd]

117 [t y] = sirdid; % SIRD with new parameters

118 dd = [ Sd(1:nd)’; Id(1:nd)’; Rd(1:nd)’; Dd(1:nd)’];

119 sol = [y(td,1); y(td,2); y(td,3); y(td,4)]; % computed

120 FF = dd - sol; % residual

121 display(’Norm of residual’)

122 norm(FF)

123 %

124 % Parameter ID from Levenberg-Marquardt Algorithm Using ODE45

125 %

126 lam = 0.1; alpha = 4.0; p = [x(1) x(2) x(3)]’;

127 %pause

128 for lm = 1:100

129 da = 0.001;

130 olda = p(1) + da;,oldbr = p(2); oldbd = p(3);

131 [t yp] = sirdid;

132 solp = [yp(td,1); yp(td,2); yp(td,3); yp(td,4)];

133 FFa = (solp - sol)/da;

134 dbr = 0.01;

135 oldbr = p(2) + dbr; olda = p(1); oldbd = p(3);

136 [t yp] = sirdid;

137 solp = [yp(td,1); yp(td,2); yp(td,3); yp(td,4)];

138 FFbr = (solp - sol)/dbr;

139 dbd = 0.001;

140 oldbd = p(3) + dbd; olda = p(1); oldbr = p(2);

141 [t yp] = sirdid;

142 solp = [yp(td,1); yp(td,2); yp(td,3); yp(td,4)];

143 FFbd = (solp - sol)/dbd;

144 FFP = -[FFa FFbr FFbd];

145 newp = p - alpha*(FFP’*FFP + lam*eye(3))\FFP’*FF;
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146 error = norm(newp - p)/norm(p);

147 p = newp;

148 olda = p(1); oldbr = p(2); oldbd = p(3);

149 [t y] = sirdid;

150 sol = [y(td,1); y(td,2); y(td,3); y(td,4)];

151 FF = dd - sol;

152 norm(FF);

153 if error < 0.00001

154 break

155 end

156 end

157 display(’Parameters from Levenberg-Marquardt’)

158 olda = p(1);

159 oldbr = p(2);

160 oldbd = p(3);

161 [olda oldbr oldbd]

162 display(’Norm of residual from Levenberg-Marquardt’)

163 norm(FF)

164 error;

165 lm

166 %

167 figure(2)

168 plot(td(1:1:meas+1),Sd(1:1:meas+1),’*’,td(1:1:meas+1),...

169 Id(1:1:meas+1),’o’,...

170 td(1:1:meas+1),Rd(1:1:meas+1),’s’, td(1:1:meas+1),...

171 Dd(1:1:meas+1),’d’)

172 hold on

173 % plot(td,Sd,’x’, td,Id,’x’, td,Rd,’x’, td,Dd,’x’)

174 [t y] = sirdid;

175 plot(t,y(:,1),’b’ ,t,y(:,2),’m’ ,t,y(:,3),’r’ ,t,y(:,4),’k’)

176 title([’a = ’ ,num2str(olda),’ br = ’ ,num2str(oldbr),...

177 ’ bd = ’ ,num2str(oldbd)]);

178 ylabel(’population percentages’)

179 xlabel(’time’)

180 legend(’susceptible data’, ’infected data’,...

181 ’recovered data’, ’dead data’);

182 grid on

183 svd(A(2:m,:));

184 cond(A(2:m,:));

185 svd(FFP);

186 cond(FFP);
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Figure 9.4.1: Parameter Identification

9.5 The Cumulated Infection Version of SIRD

The motivation for introducing the cumulated infection model is to use "smoother"

data than is given by daily data for the four SIRD functions of time. Figure

9.5.1 displays the daily infected and death data for the US COVID-19. Note the

jagged appearance. By taking the integral or cumulated sum of the data one

obtains a continuous and strictly increasing function of time. This section shows

the four functions of time can be expressed as function of the cumulated in-

fection, which evolves from a nonlinear differential equation, CI-equation, with

the three parameters of the SIRD model.

Consider the first equation in the SIRD model.

1






= −Z 

0

1






= −

Z 

0

 = −()

ln(()((0)) = −()
Now solve for () () and () in terms of the cumulated infection () :

() = (0) exp(−())
() = (0) + () and

() = (0) + ()

In order to find () without explicitly knowing  use the fact that + +
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Figure 9.5.1: Daily Infected and Death Data

+ is a constant, say . Solve for  and use the above

 = −  −−

= − (0) exp(−())
− ((0) + ())− ((0) + ()) 

() is the integral of , and therefore the derivative of () is  This gives the

nonlinear differential equation for the cumulative infection.

Cumulative Infection Equation, CI-equation.




= − (0) exp(−())
− ((0) + ())− ((0) + ())

= (0) + (0)(1− exp(−()))
−()− () and

(0) is given.

If the initial values (0) (0)(0) and the cumulative function at (0)

as well as the three parameters are known, then one can solve the CI-equation

for () with  ≥ 0 Furthermore, by using cumulative infection and cumulative

death data near to 0 the three parameters can be identified.
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9.6 MATLAB Code sird_paridc.m

The following computations solve the same problem as in Section 9.4, but here

the CI-equation is used. The test data is defined in lines 34-58, and in line 47

the cumulated sum of the daily infected data is defined. The initial estimate

of the three parameters is given in lines 59-67 and uses least squares. The

objective and initial residual are defined in lines 73-75. Note the data for the

cumulated infection and cumulated death are only used in these calculations.

The Levenberg-Marquardt method is implemented in lines 79-115. Here the

CI-equation is solved numerous times in lines 69, 85, 91, 97 and 107. The

output is given in Figure 9.6.1 where the three parameter are identified using

the indicated data points.

1 % This code uses least squares to identify three parameters

2 % in the SIRD model:

3 % S_t = -a SI,

4 % I_t = a SI - (br + bd) I,

5 % R_t = br I and

6 % D_t = bd I where

7 % a = "contagious" (effective contact) parameter,

8 % br = "recovery" parameter and

9 % bd = "death" parameter.

10 % The data is given in the vectors Sd, Id Rd and Dd,

11 % and they are adjusted by a random variable.

12 %

13 % An equivalent system is for the cumulative sum or integral

14 % of the infection, the CI-equation:

15 % C_t = popmax - S(0) - R(0) - D(0)

16 % + S(0) (1 - exp(-aC) - br C - bd C, C(0) = 0.

17 % This requires initial cumulative infection and death data.

18 %

19 % function [t y] = sirdidc

20 % global olda oldbr oldbd so io ro do popmax t0 y0 tend

21 % y0 = io;

22 % to = 0;

23 % tf = 60;

24 % opts = odeset(’RelTol’,1e-3,’AbsTol’,1e-6);

25 % [t y] = ode45(’ypsirdidc’,[to:1:tf],y0,opts);

26 %

27 % function ypsirdidcout = ypsirdidc(t,C)

28 % global olda oldbr oldbd so io ro do popmax t0 y0 tend

29 % ypsirdidcout = popmax - ro - do - so*exp(-olda*C)...

30 % - oldbr *C - oldbd*C;

31 %

32 clear; clf(figure(1));

33 global olda oldbr oldbd so io ro do popmax t0 y0 tend
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34 %

35 % Test Data

36 %

37 nd = 12;

38 td = 1:nd;

39 Id = [1.00 2.56 6.37 14.68 29.20 46.35 58.19 61.64 ...

40 59.35 54.50 48.88 43.32 38.15]’;

41 Rd = [0.00 0.22 0.77 2.09 4.93 9.93 16.92 24.91 32.94 ...

42 40.07 47.29 53.37 58.75]’;

43 Dd = [0.000 0.008 0.031 0.083 0.197 0.396 0.675 0.994 1.315 ...

44 1.615 1.888 2.131 2.345]’;

45 popmax = 100;

46 Sd = popmax - Id - Rd - Dd;

47 Cd = [0; cumsum(Id(1:(nd)))];

48 rvec = rand(nd,1);

49 %Id(1:nd) = Id(1:nd) + Id(1:nd).*(2*rvec - 1)/100;

50 rvec = rand(nd,1);

51 %Rd(1:nd) = Rd(1:nd) + Rd(1:nd).*(1*rvec )/100;

52 rvec = rand(nd,1);

53 %Dd(1:nd) = Dd(1:nd) + Dd(1:nd).*(1*rvec )/50;

54 Sd = popmax - Id - Rd - Dd;

55 io = Id(1);

56 ro = Rd(1);

57 do = Dd(1);

58 so = popmax - io - ro - do;

59 %

60 % Initial Parameter ID from CI-equation formulation

61 %

62 oldbr = Cd\(Rd - Rd(1));

63 oldbd = Cd\(Dd - Dd(1));

64 Sd = popmax - (diff(Cd)) - Rd(1:(nd)) - Dd(1:(nd));

65 olda = Cd(1:(nd))\(-log(Sd/Sd(1)));

66 display(’Initial Parameters a,br,bd ’)

67 x = [olda oldbr oldbd]’

68 % SIRDc with initial parameters

69 [t yp] = sirdidc;

70 C = yp;

71 %dd = [Cd(1:nd); Rd(1:nd); Dd(1:nd)]; % objective

72 %solc = [C(td); ro + oldbr*C(td); do + oldbd*C(td)];

73 dd = [Cd(1:nd); Dd(1:nd)]; % objective

74 solc = [C(td); do + oldbd*C(td)]; % initial computed

75 FF = dd - solc; % initial residual

76 display(’Norm of initial residual’)

77 norm(FF)

78 %
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79 % Parameter ID from Levenberg-Marquardt Algorithm

80 %

81 lam = 1.0; alpha = 2.0; p = x;

82 for lm = 1:100

83 da = 0.001;

84 olda = p(1) + da; oldbr = p(2); oldbd = p(3);

85 [t yp] = sirdidc;

86 %solp = [yp(td); ro + oldbr*yp(td); do + oldbd*yp(td)];

87 solp = [yp(td); do + oldbd*yp(td)];

88 FFa = (solp - solc)/da;

89 dbr = 0.001;

90 oldbr = p(2) + dbr; olda = p(1); oldbd = p(3);

91 [t yp] = sirdidc;

92 solp = [yp(td); do + oldbd*yp(td)];

93 %solp = [yp(td); ro + oldbr*yp(td); do + oldbd*yp(td)];

94 FFbr = (solp - solc)/dbr;

95 dbd = 0.001 ;

96 oldbd = p(3) + dbd; olda = p(1); oldbr = p(2);

97 [t yp] = sirdidc;

98 %solp = [yp(td); ro + oldbr*yp(td); do + oldbd*yp(td)];

99 solp = [yp(td); do + oldbd*yp(td)];

100 FFbd = (solp - solc)/dbd;

101 FFP = -[FFa FFbr FFbd];

102 newp = p - alpha*(FFP’*FFP + lam*eye(3))\FFP’*FF;

103 error = norm(newp - p)/norm(p);

104 lm;

105 p = newp;

106 olda = p(1); oldbr = p(2); oldbd = p(3);

107 [t y] = sirdidc;

108 %solc = [y(td); ro + oldbr*y(td); do + oldbd*y(td)];

109 solc = [y(td); do + oldbd*y(td)];

110 FF = dd - solc;

111 norm(FF);

112 if error < 0.00001

113 break

114 end

115 end

116 display(’Parameters from Levenberg-Marquardt’)

117 [olda oldbr oldbd]’

118 display(’Norm of residual from Levenberg-Marquardt’)

119 norm(FF)

120 error;

121 lm

122 %

123 figure(1)
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Figure 9.6.1: Parameter Identifcation and CI-equation

124 plot(td,Sd(1:nd),’*’, td, Id(1:nd),’o’,...

125 td,Rd(1:nd),’s’, td, Dd(1:nd),’d’)

126 hold on

127 [t y] = sirdidc;

128 C = y;

129 S = so*exp(-olda*C(1:60));

130 I = diff(C(1:61));

131 R = ro + oldbr*C(1:60);

132 D = do + oldbd*C(1:60);

133 time = t(1:60)+1;

134 plot(time,S,’b’ ,time,I,’m’ ,time,R,’r’ ,time,D,’k’)

135 title([’a = ’ ,num2str(olda),’ br = ’ ,num2str(oldbr),...

136 ’ bd = ’ ,num2str(oldbd)]);

137 ylabel(’population percentages’)

138 xlabel(’time’)

139 legend(’susceptible data’, ’infected data’,...

140 ’recovered data’, ’dead data’);

141 grid on

142 %svd(A(2:m,:))

143 %cond(A(2:m,:))

144 %svd(FFP)

145 %cond(FFP)



9.7. US COVID-19: AN AGGREGATED MODEL 99

9.7 US COVID-19: An Aggregated Model

The SIRD model assumes the parameters are constant with respect to the par-

ticular population set and the time interval. This is not the case with respect to

the entire US population. The COVID-19 virus varies with population location

and time. This model is an attempt to "lump" or "aggregate" these local and

time intervals into a more global (with respect to US) model. One approach

would be to approximate the three SIRD parameters for all locations and time

intervals, and then to form some sort of weighted average. The approach here

is to use the cumulated infection and cumulated death data for the US and

nonlinear parameter identification to approximate the three SIRD parameters.

In addition to the three parameters, two implicit parameters will include

"death delay" and "effective population size." The death delay is related to

the time gap between infection and time of death. The effective population

is initially small and then increases as the population moves and spreads the

virus. The following code attempts to quantify the three SIRD parameters and

these two implicit parameters.

9.8 MATLAB Code sird_paridcuscovid2.m

This code is a work-in-progress, dated 9-15-2020 by Robert E. White. The two

outer loops have been set for fixed death delays and fixed data noise. The reader

will find it interesting to experiment with these. There are six subsections on

the general code, effective population, death delay, error and data sensitivity,

calculation from 11-15-2020 with variable data, and variable effective contact.

9.8.1 Basic Code Date 9-15-2020

Cumulated infected and cumulated death data are given in lines 34-43 where

the first day is 3-22-2020. The data is contained in the UScovid19.m file and

may have been updated. Figure 9.5.1 has a daily graph of these, and note

the cumulated graphs should be the integral or areas in this figure. The units

are in lines 44-46. Units can be one person, 100 percent of the population,

100 000 or adjusted to 12 000 as in line 44. The full 100 000 persons gives

3272 million in the US. The adjusted 12 000 gives the effective population of

3272 ∗ 12000 = 39264 million. This was found by minimizing the norm in lines

200-203.

The recovery data in lines 58-63 is uncertain. One should experiment with

the recovery ratio in line 60. Roughly,  = 090 means 90 percent of the

infected recover and are no longer susceptible. The death data delay is set at

 = 10 in lines 65-68.  = 10 was found by experimentation to minimize the

norm in line 176. The noise data is set in lines 75-80.

Lines 71, 72-88 choose the initial data intervals. Line 71 chooses  = 20

data points and  = 110 starting day with death delay  = 10. The

Levenberg-Marquardt algorithm is executed in lines 91-153. The initial estimate
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for the three parameters is in lines 91-98. The target in lines 101-102 has three

vectors for ,  and  data. The condition number of the derivative matrix is

of order 105, and therefore, variations in the numerical solution due to round-off

or uncertain data can be important.

1 % This code uses least squares to identify three parameters

2 % in the SIRD model:

3 % S_t = -a SI,

4 % I_t = a SI - (br + bd) I,

5 % R_t = br I and

6 % D_t = bd I where

7 % a = "contagious" (effective contact) parameter,

8 % br = "recovery" parameter and

9 % bd = "death" parameter.

10 %

11 % An equivalent system is for the cumulative sum or integral

12 % of the infection (solution of the CI-equation)

13 % C_t = popmax - S(t0) - R(t0) - D(t0)

14 % + S(t0)(1 - exp(-aC)) - br C - bd C, C(t0) = 0.

15 % This requires initial cumulative both infection and death data.

16 %

17 % function [t y] = sirdidc1

18 % global olda oldbr oldbd so io ro do popmax t0 y0 tend

19 % %y0 = io;

20 % %to = 0;

21 % tf = tend;

22 % opts = odeset(’RelTol’,1e-3,’AbsTol’,1e-6);

23 % [t y] = ode45(’ypsirdidc’,[t0:1:tf],y0,opts);

24 %

25 % function ypsirdidcout = ypsirdidc(t,C)

26 % global olda oldbr oldbd so io ro do popmax t0 y0 tend

27 % ypsirdidcout = popmax - ro - do - so*exp(-olda*C)...

28 % - oldbr*C - oldbd*C;

29 %

30 clear;

31 clf(figure(1)); clf(figure(2));

32 clf(figure(3)); clf(figure(4));

33 global olda oldbr oldbd so io ro do popmax t0 y0 tend

34 %

35 % US COVID-19 Cumulative Data: infection (ID) and deaths (DD).

36 % Data is from coronavirus.jhu.edu.

37 % First day is 3-22-2020. Some numbers have been updated!

38 %

39 UScovid19;

40 % Populations are in units per 100K. There are 3272 units in US.

41 popmax = 3272;
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42 ID = ID*popmax; % gives cumulated infected caess

43 DD = DD*popmax; % gives cumulated deaths

44 popunit = 12000; % gives data per popunit ???

45 popmax*popunit % effective population

46 DD = DD/popunit; ID = ID/popunit;

47 %

48 figure(1)

49 plot(diff(DD))

50 hold on

51 plot(diff(ID))

52 title(’US COVID-19 Data’);

53 ylabel(’population’)

54 xlabel(’time’)

55 legend(’dead data’,’infected data’,’Location’, ’best’);

56 grid on

57 %

58 [m n] = size(ID); td = 0:n-1;

59 recovratio = (ID(n) - DD(n))/ID(n);

60 RD(1) = 0; ratio = 0.9 %???

61 for i = 1:n-1 %???

62 RD(i+1) = RD(i) + ratio*recovratio*(ID(i+1)-ID(i)); %???

63 end

64 %

65 Pmin = 10; Pmax = 10; % delay in death data ???

66 countP = 1;

67 %

68 for P = Pmin:Pmax % computations with variable delays

69 %

70 for testit = 1:1 % computations with noise in data

71 nd = 20; shift = 110; % number of data starting at shift

72 Cd = ID((1:nd)+shift)’ - ID(shift+1)’;

73 Dd = DD((1:nd)+shift + P)’ ; % use delayed death data

74 Rd = RD((1:nd)+shift)’;

75 rvec = rand(nd,1); % used in mean and std

76 %Cd = Cd + Cd.*(2*rvec - 1)/50;

77 rvec = rand(nd,1); % used in mean and std

78 %Rd = Rd + Rd.*(2*rvec - 1)/100;

79 rvec = rand(nd,1); % used in mean and std

80 %Dd = Dd + Dd.*(2*rvec - 1)/100;

81 td = (1:nd) + shift; Td = 1:nd;

82 t0 = td(1); tend = td(nd);

83 CP = ID(shift+1);

84 y0 = 0;

85 io = sum((ID((-2:4)+shift) - ID((-3:3)+shift)))/7;

86 ro = Rd(1);
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87 do = Dd(1);

88 so = popmax - io - ro - do;

89 %data = [td’ Cd Dd]

90 %

91 % Parameter ID initial estimate

92 %

93 oldbr = Cd\(Rd - Rd(1));

94 oldbd = Cd\(Dd - Dd(1));

95 Sd = popmax - (diff(Cd)) - Rd(1:(nd-1)) - Dd(1:(nd-1));

96 olda = Cd(1:(nd-1))\(-log(Sd/Sd(1)));

97 display(’Initial Parameters a,br,bd ’)

98 x = [olda oldbr oldbd]’

99 % Target and Start for Levenberg-Marquardt Algorithm

100 [t yp] = sirdidc1; C = yp ; % SIRD (CI-equation)

101 dd = [Cd(1:nd); Rd(1:nd);...

102 Dd(1:nd)]; % target

103 solc = [C(Td) ; ro + oldbr*(C(Td)); ...

104 do + oldbd*(C(Td))]; % initial computed

105 %dd = [Cd(1:nd); Dd(1:nd)]; % target

106 %solc = [C(Td); do + oldbd*C(Td)]; % initial computed

107 FF = dd - solc;

108 %display(’Norm of initial residual’)

109 %norm(FF)

110 %

111 % Parameter ID from Levenberg-Marquardt Algorithm

112 %

113 lam = 1.0; alpha = 4.0; p = x;

114 for lm = 1:2000

115 da = 0.0000001;

116 olda = p(1) + da; oldbr = p(2); oldbd = p(3);

117 [t yp] = sirdidc1;

118 solp = [yp(Td); ro + oldbr*(yp(Td)); ...

119 do + oldbd*(yp(Td))];

120 %solp = [yp(Td); do + oldbd*yp(Td)];

121 FFa = (solp - solc)/da;

122 dbr = 0.00001;

123 oldbr = p(2) + dbr; olda = p(1); oldbd = p(3);

124 [t yp] = sirdidc1;

125 solp = [yp(Td) ; ro + oldbr*(yp(Td)); ...

126 do + oldbd*(yp(Td))];

127 %solp = [yp(Td); do + oldbd*yp(Td)];

128 FFbr = (solp - solc)/dbr;

129 dbd = 0.00001;

130 oldbd = p(3) + dbd; olda = p(1); oldbr = p(2);

131 [t yp] = sirdidc1;
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132 solp = [yp(Td) ; ro + oldbr*(yp(Td)); ...

133 do + oldbd*(yp(Td))];

134 %solp = [yp(Td); do + oldbd*yp(Td)];

135 FFbd = (solp - solc)/dbd;

136 FFP = -[FFa FFbr FFbd ];

137 newp = p - alpha*(FFP’*FFP + lam*eye(3))\(FFP’*FF);

138 error = norm(newp - p)/norm(p);

139 lm;

140 p = newp;

141 olda = p(1); oldbr = p(2); oldbd = p(3);

142 [t y] = sirdidc1;

143 solc = [y(Td) ; ro + oldbr*(y(Td)); ...

144 do + oldbd*(y(Td))];

145 %solc = [y(Td); do + oldbd*y(Td)];

146 FF = dd - solc;

147 %norm(FF)

148 %pause

149 err(lm,1:3) = p’;

150 if error < 0.000001

151 break

152 end

153 end

154 [olda oldbr oldbd]’;

155 norm(FF);

156 error;

157 lm ;

158 %

159 % Use New Parameters to Solve SIRD Model of US COVID-19

160 %

161 tend = 230; olda = olda*1.0

162 lm

163 Dd = DD((1:nd)+shift + P)’ ;

164 Rd = RD((1:nd)+shift)’;

165 io = sum((ID((-2:4)+shift) - ID((-3:3)+shift)))/7;

166 ro = Rd(1);

167 do = Dd(1);

168 so = popmax - io - ro - do;

169 [t y] = sirdidc1; C = y + 0;

170 S = so*exp(-olda*(C(1:(tend-1-shift))));

171 I = diff((C(1:(tend-shift)) - 0));

172 R = ro + oldbr*(C(1:(tend-1-shift)));

173 D = do + oldbd*(C(1:(tend-1-shift)));

174 maxD(testit) = max(D(1:60));

175 end % end loop for mean and std computations

176 res(countP) = norm(Dd(Td) - (do + oldbd*C(Td)));
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177 countP = countP + 1;

178 end % end loop for delay

179 %

180 % Output of computations

181 %

182 display( ’Data from shift to shift+(number of data points)’)

183 [shift shift+nd]

184 display(’Mean maxD ’)

185 mean(maxD)

186 display(’Standard deviation maxD ’)

187 std(maxD)

188 display(’R0 at ndays past shift’ )

189 ndays = 1

190 S(ndays)*olda/(oldbr + oldbd)

191 format long

192 display(’Parameters a,br,bd ’)

193 [olda oldbr oldbd ]’

194 display(’Singular values of FFP’)

195 svd(FFP)

196 cond(FFP)

197 format short

198 display(’Norm of target - computed in LM’)

199 norm(FF)

200 display(’Norm of daily I data - daily I computed’)

201 Idata = diff(ID((shift+1):(shift+1+2*nd))’*popunit);

202 Icomp = I((1:(2*nd)))*popunit;

203 norm(Idata - Icomp)

204 [resmin countP] = min(res);

205 PP = Pmin + countP - 1

206 display(’Norm death data - computed death’)

207 resmin

208 res’

209 %

210 figure(2)

211 plot(td,(Cd(1:nd) + CP)*popunit,’o’, td,Dd(1:nd)*popunit,’d’)

212 hold on

213 time = (shift+1):tend-1;

214 plot(time,S*popunit,’b’ ,time,I*popunit,’m’ ,...

215 time,R*popunit,’r’ ,time,D*popunit,’k’)

216 %plot(time,S+I+R+D)

217 plot(time, (C(1:(tend-1-shift)) + CP)*popunit )

218 title([’a = ’ ,num2str(olda),’ br = ’ ,num2str(oldbr),...

219 ’ bd = ’ ,num2str(oldbd)]);

220 ylabel(’population’)

221 xlabel(’time’)
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222 legend(’cum. infected data’, ’cum. death data’,...

223 ’susceptible’, ’infected’,’recovered’,...

224 ’dead ’, ’computed C’, ’Location’, ’northeast’);

225 grid on

226 %

227 figure(3)

228 plot( time,I*popunit,’m’, time,D*popunit,’k’)

229 hold on

230 %resD = DD((1:nd)+shift+PP)’- D(1:nd);

231 nn = n - shift - P ;

232 plot((1:nn) + shift , DD((1:nn) + shift + P )*popunit)

233 title([’olda = ’ ,num2str(olda),’ oldbr = ’ ,num2str(oldbr),...

234 ’ oldbd = ’ ,num2str(oldbd)]);

235 ylabel(’population’)

236 xlabel(’time’)

237 legend( ’computed infected’, ’computed cum. dead’,...

238 ’cum. dead data’, ’Location’, ’best’);

239 grid on

240 %

241 figure(4)

242 plot(time,I*popunit)

243 hold on

244 plot(1:n-1,diff(ID)*popunit)

245 title([’olda = ’ ,num2str(olda),’ oldbr = ’ ,num2str(oldbr),...

246 ’ oldbd = ’ ,num2str(oldbd)]);

247 ylabel(’population’)

248 xlabel(’time’)

249 legend(’computed infected’, ’infected data’,...

250 ’Location’, ’northeast’);

251 grid on

252 %

253 % Use sirdid.m which solves the SIRD without the CI-equation.

254 %

255 [tt yy] = sirdid; % uses shift, t0, tend and above parameters

256 figure(5);

257 subplot(2,1,1)

258 plot(tt,yy(:,1)*popunit, tt,yy(:,3)*popunit)

259 title(’susceptible and recovered’)

260 grid on

261 subplot(2,1,2)

262 plot(tt,yy(:,2)*popunit, tt,yy(:,4)*popunit)

263 title(’dead and infected’)

264 grid on

The numerical output in lines 180-209 follows from the updated solution

in lines 159-173. Figures 9.8.1, 9.8.2 and 9.8.3 follow from lines 210-225, 227-



106 CHAPTER 9. NONLINEAR LS AND EPIDEMIC MODELS

Figure 9.8.1: Aggregated US COVID-19

239 and 241-251. The figure generated by lines 253-264 check the CI-equation

calculations. In Figure 9.8.1 the top curve is the susceptible population, the

middle curve is the cumulated infected and the third curve is the recovered

population. Figure 9.8.2 has the death data and computed cumulated dead at

the top, and the bottom curve is the computed daily infected. Figure 9.8.3

compares the daily infected data with the daily computed infected.

9.8.2 Effective Population

Figure 9.8.4 experiments with different effective population sizes by adjusting

 in lines 44 and 45. The three computed infected populations to the

left side correspond to  = 1 000 5 000 and 10 000 and it uses the data

from day 4 to 24. The optimal choice of  can be found by minimizing

the norm in lines 201-203. As the US population moves about the country, the

effective population increases. The three computed infected populations to the

right side correspond to  = 10 000, 50 000 and 100 000 and it uses the

data from day 110 to 130. The near optimal choice of  is 16 000 as is

illustrated in Figure 9.8.3.

9.8.3 Death Delay

The next two figures indicate the death delays associated with the two time

intervals near the relative maximums. Figure 9.8.5 is for the time interval

from day 4 to 24 and uses the effective population equal to 6.5 million. The
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Figure 9.8.2: Aggregated US COVID-19

norms are computed in lines 176 and 207, and  = 7 gives the smallest norm.

Figure 9.8.6 is for the time interval from day 110 to 130 and uses the effective

population equal to 52.4 million. The norms are computed in lines 176 and 207,

and  = 10 gives the smallest norm. Both these calculations use 20 data points

to determine the three SIRD parameters, and any predictions for times larger

than 20 additional days is not realistic. The primary reason for this is that the

parameters do vary with time because the implementation of the protocols for

the control of the virus do vary.

9.8.4 Error Sensitivity

Another concern is the choice of errors used to determine the five parameters.

The following errors were used:

 = [ −  −  −] to find   and 

 = [ − ] = [



− ()] to find   and

 = [ −] to find  

In the calculations the three SIRD parameters were always computed for each

possible choice of the implicit parameters. Also the norm used was always the

2-norm. The two errors  − and


− () suggest convergence in the

1 Sobolev norm.

Any small variation in the effective contact parameter, , can give large

variations in the solution. Variation of  by one percent (see line 161) gives



108 CHAPTER 9. NONLINEAR LS AND EPIDEMIC MODELS

Figure 9.8.3: Aggregated US COVID-19

these changes:

(171) goes from 194 100 to 203 800 and

the relative maximum of the daily infected goes

from (122 67 100) to (129 76 200).

The condition number of the matrix used in the Levenberg-Marquardt cal-

culations is of order 39,000. If one varies the data by two percent by using lines

75-80 and does 100 executions of the loop starting at line 70, then the mean of

(171) is 194 800 and the standard deviation is 6 600.

9.8.5 Calculations With Variable Data

The data in Figure 9.8.7 varies from March 22, 2020 (day 1) to November 15,

2020 (day (237). The calculations use data from 20 day intervals in April,

July and October. The effective populations increased from 3272*2000, to

3272*10000 and then to full population 3272*100000. This reflects the spread

of the virus which is a result of human movement about the US. Because the

model parameters vary with time, the computed infected population eventu-

ally do not approximate the daily infected data. Roughly, 20 past data points

maybe able to predict 20 future data points. These calculations are sensitive

to small variations in the effective contact parameter in line 161.
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Figure 9.8.4: Effective Population Size

Figure 9.8.5: Deaths from Day 4 to 24 Data
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Figure 9.8.6: Deaths from Day 110 to 130 Data

Figure 9.8.7: Computed Infected US COVID-19
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Figure 9.8.8: Control of the Infected Population

9.8.6 Use of Protocols to Adjust Effective Contact

In the SIRD model the differential equation for the infected is




= ( −  − ) and  is positive.

So, if the second factor is positive (negative), then  will increase (decrease).

This may also be written as

()

 + 
 1 (or  1) for  to increase (or decrease).

The effective contact parameter, , controls the slope of the infective curve. The

susceptible population, (), is large and the effective contact is much smaller.

This ratio is computed in line 190, and it will vary with time. At the local

maximum it will be 1.0.

Use of protocols can be used to reduce this ratio. Small variations in the

effective contact parameter can have larger variations in the computed infected

population. This is illustrated in Figure 9.8.8 where the variation is plus or mi-

nus one percent as given in line 161. Note, the maximum infected computation

vary from 216 326 to 643 as the effective contact varies from 099 100

to 101 where  = 000028725, respectively.
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