Computational Linear
Algebra

Courses on linear algebra and numerical analysis need each other. Often NA
courses have some linear algebra topics, and LA courses mention some topics
from numerical analysis/scientific computing. This text merges these two areas
into one introductory undergraduate course. It assumes students have had multi-
variable calculus. A second goal of this text is to demonstrate the intimate rela-
tionship of linear algebra to applications/computations.

A rigorous presentation has been maintained. A third reason for writing this text
is to present, in the first half of the course, the very important topic on singular
value decomposition, SVD. This is done by first restricting consideration to real
matrices and vector spaces. The general inner product vector spaces are considered
starting in the middle of the text.

The text has a number of applications. These are to motivate the student to study
the linear algebra topics. Also, the text has a number of computations. MATLAB®
is used, but one could modify these codes to other programming languages. These
are either to simplify some linear algebra computation, or to model a particular
application.
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Preface

Courses on linear algebra and numerical analysis need each other. Often NA
courses have some linear algebra topics, and LA courses mention some topics
from numerical analysis/scientific computing. One reason for writing this text
is to merge these two areas into one introductory undergraduate course for
students with multivariable calculus. A second goal is to demonstrate the
intimate relationship of linear algebra to applications/computations. A third
objective is to present, in the first half of the course, the very important topic
of singular value decomposition, SVD.

Of course some topics have not been fully covered. Here the rigorous pre-
sentation has been maintained. This is done by first restricting consideration
to real matrices and vector spaces in R™. The general inner product vector
spaces are considered starting in the middle of the text, Chapter 10.

The text has a number of applications. These are to motivate the student
to study the linear algebra topics. The purpose of an application is not to nec-
essarily teach all of the application, but it is to make a case for the importance
and utility of linear algebra.

Also, the text has a number of computations. Here MATLAB® [18] has
been used, but one could modify these codes to other programming languages.
These are either to simplify some linear algebra computation, or to model a
particular application. One could invest a lot of time examining these codes,
but they should be viewed as supplements and not a replacement to linear
algebra topics.

Matrices with inverses are covered in the first two chapters. Least squares
and under-determined systems are in Chapters 3 and 4. Orthogonality is pre-
sented in Chapters 5 and 6. Chapters 7-9 are related to the SVD. Chapter
10 covers general inner product spaces and includes topics related to bound-
ary value problems. Basic iterative methods are introduced in Chapter 11:
matrix splitting, conjugate gradient (CG) and generalized minimum residual
method (GMRES). Finally, not all problems are linear, and in the last chapter
introductions are given to the basic nonlinear methods: Picard, Newton and
Levenberg-Marquardt.

Some topics in this text have been taken from my lecture notes and [26]
[28]. These select topics are not comprehensive and neither are the remaining
contents of this text. In this text I cited a number of authors and mention
several here. A classic text is volume one by R. Courant and D. Hilbert, [6],
and the preface and Chapters 5 and 6 are very interesting. The book by G.
Golub and C. Van Loan, [9], gives a comprehensive study of matrix analysis

xiii



xiv Preface

as it relates to numerical linear algebra. The popular book by G. Strang, [23],
has a number of applications of linear algebra. The very comprehensive book
by C. Meyer, [17], is a valuable resource for further study in linear algebra
and applications.

Robert E White, July 28, 2022



Introduction

This text is a continuation of vector, matrices and algebraic linear systems
with small dimension. Because of the technical difficulties of by-hand calcu-
lations, “small” means n = 2,3 or 4. One goal is to extend this to higher
dimensions and the use of computing tools. For example, fluid flow models in
3D space can have algebraic systems with very large numbers of unknowns.
Consider finding air pressures inside of small cubes with 100 edges in each
direction; this gives n = 10% unknowns! Linear algebra and computation can
be combined to solve such problems.

The first four chapters contain extensions of some topics you have stud-
ied. Chapter 1 extends vector and matrix operations to vectors with n real
numbers and to n X n matrices with n? components. Algebraic systems with
n unknowns and n equations will be solved by Gauss elimination (row oper-
ations), inverse matrices and determinants. Four very special matrices with
inverse are introduced in the second chapter. The third and fourth chapters
are a study of over-determined (least squares) and under-determined (multiple
solutions) algebraic systems.

Another view of the course is the study of seven factorizations of a matrix:
PTLU, LU, GTG, QR, QDQT, USVT and UTU*. The first three will be
done in Chapter 2, the next two will be presented in Chapters 5 and 6. The
singular value decomposition (SVD) of an m x n matrix is ULV? and it will
be studied in Chapters 7-9. The SVD has been known for well over a century,
but with the use of computers it has proven useful in a number of areas such
as image compression and search engines. The last factorization, UTU*, is for
matrices with complex numbers as components.

The notion of vectors is extended to functions or objects that can be added
and multiplied by scalers. This is done in Chapter 10 and will be applied to
boundary value problems where matrices are now replaced by differential op-
erators. Here there are parallels between symmetric matrices and self-adjoint
boundary value problems.

For very large algebraic systems, direct methods such as Gauss elimination
require large storage and large computer operations. An alternative is to use
iterative methods which are introduced in Chapter 11. The last chapter deals
with another problem: not all problems are linear. For example, finding the
square root means solve 22 — d = 0. Fortunately, these can be approximated
by a sequence of linear solves as in Newton’s method to find the square root.

XV



xvi Introduction

This one-semester course is just the beginning for additional studies. Math-
ematics courses on numerical analysis, numerical solutions of differential equa-
tions, numerical linear algebra and functional analysis might be interesting.
Computer science has a number of courses that will help with using partic-
ular computer architectures, artificial intelligence and algorithms. Statistical
modeling and computing have always been important. Finally, there are many
application courses in the science/engineering programs.

The computer codes and updates for this book can be found at the website:

white.math.ncsu.edu/filenames

The MathWorks, Inc.

3 Apple Hill Drive
Natick, MA 01760-2098, USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
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